

SACRED HEART CATHOLIC PRIMARY SCHOOL \& NURSERY

Bar Model Policy

This is our school.
Together we worship; Together we learn; Together we belong.

With the love of God, our dreams and ambitions come true

September 2023

Policy Date: September 2023
Policy Status: Statutory Policy
Awaiting approval by Governing
Body October 2023
Review Cycle: 18months or as require
Next Review Date: January 2025

Mission Statement 'Together we worship, Together we learn, Together we belong - with the love of God... our dreams and ambitions come true.'

Our broad, balanced, creative curriculum and enrichment activities provide opportunities for everyone to achieve and succeed. Together we take pride in making a positive contribution to our school and the wider community.

This policy should be referred to in conjunction with the curriculum, assessment and teaching and learning policies.

SAFEGUARDING STATEMENT

"Sacred Heart Catholic Primary School is committed to safeguarding and promoting the welfare of children and young people and expects all staff and volunteers to share this commitment".

Contents

What is bar modelling?

Different types of bar models
Overview of teaching progression

EYFS - bar modelling foundations

Progression across the year groups

- Place value
- Number bonds
- Addition
- Subtraction
- Addition and subtraction problems
- Multiplication
- Division
- Fractions
- Algebra
- Ratio and proportion
- Measurement

References

What is bar modelling?

The bar model is used in Singapore and other countries, such as Japan and the USA, to support children in problem solving. It is not a method for solving problems, but a way of revealing the mathematical structure within a problem and gaining insight and clarity as to how to solve it. It supports the transformation of real life problems into a mathematical form and can bridge the gap between concrete mathematical experiences and abstract representations. It should be preceded by and used in conjunction with a variety of representations, both concrete and pictorial, all of which contribute to children's developing number sense. It can be used to represent problems involving the four operations, ratio and proportion. It is also useful for representing unknowns in a problem and as such can be a pre-cursor to more symbolic algebra.

Concrete	
$\triangle \perp \perp \perp \perp \perp$	
Pictorial	
6	
4	2
Abstract	
$4+2$ or $2+4$	

In the 1960s Jerome Bruner proposed that people learn in three stages: concrete, pictorial, abstract. Bar models act as a bridge between concrete and abstract as they support children with the pictorial stage. In the concrete stage, the structure of a bar model can be explored using manipulatives. Using the pictorial bar model allows children to understand what they are being asked to do before then completing the calculation in the abstract form.

```
Pupils make use of concrete
        objects to
    make sense of problems
    involving whole and
        comparison ideas
```

Drawing of rectangular bars
as pictorial /mathematical
representations of the ideas

Use of the

representations to identify the mathematics that needs
to be applied to solve the problem

A bar model uses rectangles to represent known and unknown parts of a problem and places emphasis on understanding parts and wholes. They bring together all the parts of a question into one diagram. Once a student has represented all the necessary information and identified the unknown part, including which operation they may need to use, they can begin working out the solution (this is now the abstract stage). A bar model will not tell
a child the answer to a problem but will help them understand the structure and what they are required to do.

Different types of bar models

Bar modelling structures and vocabulary are introduced to children in the Early Years Foundation Stage (EYFS). Throughout school, concrete representations of bar models should be used to support transition into pictorial representations.

In all year groups, the concrete manipulation of objects in linear structures to represent bars should be explored and understood sufficiently before introducing the pictorial representations that are shown in this document. Cubes, counters, objects and Cuisenaire rods are used to support exploration of bar model structures at the concrete stage of learning in all year groups when children come across new and more complicated structures. Similarly, even where children have used bar models before for that area of maths, teachers may choose to revisit the concrete stage to ensure a deep understanding of the structure before moving on.

Bar models can be adapted and varied in many ways but the underlying structures remain the same. Children need to see that they are a flexible tool by varying whether children are asked to 'find a part' or 'find the whole' when using bar model representation e.g.

Find a part			Find the whole	
$15-\ldots=4$			$234+125=$	
15			?	
	4	?	234	125

In EYFS and early year 1, use brackets above a bar to represent the whole. Towards the end of Year 1 and throughout Year 2, introduce using whole bars above the bar model to represent the whole; also continue to use the brackets so that the children do not forget that that is also an accurate representation. As children progress through KS2, they experiment with manipulating the bar model and representing the whole in different places (see addition section).

EYFS	Year 1	Year 2	KS2
- Concrete exploration - Present items in a linear fashion. - Look at and discuss bar models with pictures in e.g. $5 s$ and 10 s frames - Not expected to draw accurate models independently though could start drawing boxes around objects like a bar model - Children should not be discouraged if they try to draw bar model jottings.	- Draw discrete bar models accurately and independently. - Use brackets for the whole but be exposed to diagrams where the whole is represented as a bar - Look at and discuss continuous models. - Begin to use continuous models where it becomes inefficient to draw discrete models.	Make a transition from discrete to continuous for most areas of maths and be able to draw these independently and accurately with increasing levels of proportionality.	Use continuous models with increasing levels of proportionality and variation in where the whole is depicted.

Progression in vocabulary of bar models:

EYFS	Year 1	Year 2	KS2
- Children should understand and identify parts and wholes. - Not expected to call them bar models.	- Children use part and whole vocabulary - Children can identify them as bar models	- Children confidently use part and whole vocabulary - Brackets terminology used when comparing whole bar to brackets drawn previously in year 1	Children can explain all aspects of a bar model, including parts/wholes, known/unknown and brackets/bars

By Y6, children should use everything that they have learned to help them understand the structures of any problem they are facing. They should be confident using the bar model to represent problems, identifying known and unknown parts and then choosing the appropriate method for calculating the answer.

Sometimes in this document the Year 6 column looks like they 'don't use' bar models. In fact, it is the complete opposite. Year 6 is the culmination of all of the exposure and work with bar models in earlier years; Year 6 is about confident and independent application of learned bar model structures, whatever the problem, and being able to manipulate the structures they have learned during their primary years.

Ensuring there is consistency in the teaching of specific vocabulary and representations of different bar model structures deepens children's understanding of bar models as a tool and enables them to be able to use them as an efficient tool for problem solving.

Progression across the year groups

EYFS - bar modelling foundations

For all of the following areas, progression begins with the use of real life objects and moves to cubes/counters. The final stage would be for children to draw boxes around objects to show they are parts of a bar.

Understanding number

In EYFS, the 5 s frame (or 10 s frame) can be used to stimulate mathematical talk and exposure to a 'bar' representing parts if the objects are placed in a linear fashion.

For example:

How many have we got? What is our whole? How many spaces are there? How many could we have?

What do you notice? What's happened? Is this still 3? What is our whole?

What about now? Is our whole the same?

What has happened now? [there's another car]. How many have we got now? What is our number now? What is our whole? How many parts/spaces are left? Could we have any more? How many more could we have? Could we have two more?

What do you notice about this bar? This bar is full. How many have we got? What is our whole?

Representing number bonds

Using both bar model and part, part, whole representations for number bonds will ensure children are provided with variation in their representations and also begin to build foundations for independently drawing these in Year 1.

A large emphasis is placed on the part and whole vocabulary.

One more / less

- Show me one more.
- Show me one less.
- How many do we have now?

- What is our whole?
- How many more can we have? Then how many would we have? What would our whole be?

Add and subtract 2 single digit numbers

Using objects, children begin with a start number and then either add or take away a given number. Here, presenting the objects in a linear fashion allows for the early exposure of a 'bar' representation though it won't be referred to as that. Discussion will surround what the whole is and how many parts you added/took away.

3 add 2 equals 5.5 is our whole. We added these two parts together.

5 is our whole. 5 take away 1 is 4 .

Doubling and halving.

Discussion surrounds the whole and the parts.

Doubling:

We doubled this part [the four]. How many do we have now? 8 is our whole.

Halving:

How many did we start with? 6 was our whole. We halved it [either splitting or sharing]. We have 2 parts now. Half of 6 is 3 .

Place value

Number bonds

Addition

There are 2 models for addition as shown below. Where possible, calculations should always begin with concrete representations and transitions to the pictorial bar model when these skills become secure

Addition Aggregation

- two quantities combined

I have 6 red pencils and 4 yellow pencils. How many pencils do I have?
(I combine two quantities to form the whole)

Addition Augmentation - a quantity is increased

I have 6 red pencils and I buy 4 yellow pencils. How many pencils do I have?
(The bar I started with increases in length)

Year 1	Year 2	KS2
Small steps	Use the vocabulary: 4 is a part. 2 is a part. The whole is 6.	Variation in numbers and representations Whole bas above. Whole bracket above 263 94 $=357$ Whole on the right. $357=$263 94\quad Whole on the left. $\left.\begin{array}{\|l\|l}\hline 263 & 194\end{array}\right\} 357$ Whole bracket on the right $357\left\{\begin{array}{ll}\hline 263 & 94 \\ \hline\end{array}\right.$ Whole bracket on the left 'Whole below' is less conventional though children should understand that it is not incorrect.
Use this progression for: - Adding numbers within 10 - Fact families $\ldots=7 \quad 7=\ldots+\ldots$ $\ldots=7 \quad 7=\ldots+\ldots$ [White Rose Y1 planning document] - Adding groups together (aggregation) - Adding more (augmentation) - Adding two numbers within twenty 16 + 2 =	- Adding 3 one digit numbers (could be done as augmentation or aggregation)	Use bar models to understand inverse relationships.

Use the continuous bar model cons istently for representing:

- 2 digit number and tens

Use continuous bars, with increasing proportionality. e.g. $45+10$

55	
45	10

- 2 two digit numbers
e.g. $45+24$
$527+121=648$
$121+527=648$
$648-121=527$
$648-527=121$

$$
527-121=648
$$

This would NOT be a correct sentence because 527-121 would equal 406.

Subtraction - take away

I had 10 pencils and I gave 6 away, how many do I have now?
(This time we know the whole but only one of the parts, so the whole is partitioned and one of the parts removed to identify the missing part)

Year 1		Year 2	Year 3	Year 4	Year 5
Discrete model					
$7-4$					

Subtraction - finding the difference

Subtraction

- Comparison or Difference

Tom	10	
Sam	6	

Tom has 10 pencils and Sam has 6 pencils. How many more does Tom have?
(The bar is particularly valuable for seeing the difference between the two quantities)

| Year 1 |
| :--- | :--- | :--- | :--- | :--- | :--- |

Addition and subtraction - missing number problems

Once children are using the bar model with the whole as a bar at the top in Year 2, they can begin using bar models to represent missing number problems providing they have a secure understanding of how to interpret the parts, the whole and the unknown part of the question.

Multiplication

A large emphasis is placed on equal sized parts and children understanding multiplication as repeated addition.

- Doubling

- recall and use multiplication facts for the 2,5 and 10 time tables

Begin using 'groups of' e.g. 3×5 is 3 groups of 5

15		
5	5	5

When children have learned that multiplication is commutative, they can become confident representing the number statement both ways
e.g. 4×10 is 4 lots of 10

40			
10	10	10	10

4×10 is 10 lots of 4

- recall and use multiplication facts for the 3,4 and 8 time tables ($Y 4$ - up to $12 x$ 12) Represent calculations in different ways depending on the word of a worded question.
3×8 could be:
3 lots of 8 (8, 3 times)

24		
8	8	8

Or
8 lots of 3 (3, 8 times)

24							
3	3	3	3	3	3	3	3

- Solving missing number problems using multiplication knowledge

	Peter has 4 books Harry has five times as many books as Peter. How many books has Harry? 4 4 4 4 4 4 This could be introduced first using counters/cubes/Cuisenaire rods. Further questioning: - How many more does Harry have than Peter? How fewer does Peter have than Harry?

	How many do they have in altogether?

Division
Bar model representations of division are dependent on the wording used in the question If it uses the division symbol default to 'sharing' - particularly in Years 1 and 2. As children become familiar with both the grouping and sharing bar models, they may
develop a preference for solving calculations that use the division symbol but should know that if it is a worded problem, they will need to select sharing or grouping accordingly.

And then use written methods to find the size of the parts.

Progress to the children drawing
two boxes and being able to share
the counters out, or share by
putting dots in the boxes.

Fractions - representing fractions

Fractions - comparing fractions

Year 2	Year $3 \quad$ Year 4	Year 5	Year 6
Teacher might discuss that halves are bigger than thirds and quarters by showing bar models. Though this should be done with caution so that children do not think $1 / 2$ is always bigger; it is dependent on the size of the whole.	Use fraction walls where possible and Cuisenaire rods to support understanding. - compare and order unit fractions (same numerator) Use >, < or = to compare the fractions. Now order the strips from the smallest to the largest fraction. When the numerators are the same, the \qquad the denominator, the \qquad the fraction. [Y3 White Rose document] - compare and order fractions with the same denominators \square	- compare and order fractions less than 1 Use bar models to compare $\frac{5}{8}$ and $\frac{3}{4}$ [Y5 White Rose document] - compare and order fractions greater than 1 Use bar models to compare $\frac{7}{6}$ and $\frac{5}{3}$ \square \square \square Use a bar model to compare $1 \frac{2}{3}$ and $1 \frac{5}{6}$ [Y5 White Rose document]	- compare and order (denominators are not multiples of the same number)

Fractions - adding fractions

Fractions - subtracting fractions

Year 3	Year 4	Year 5	Year 6
- subtract fractions with the same denominator within 1 whole \square $\frac{5}{7}-\frac{\square}{7}=\frac{\square}{7}$ $\frac{4}{8}-\frac{\square}{8}=\frac{\square}{8}$ [Y3 White Rose document]	- subtract fractions with the same $\begin{array}{lll} \frac{7}{10} & \frac{5}{10} & \frac{2}{10} \\ \text { denominator } \end{array}$ $-=$ Children should be confident representing the subtraction as both a single	- Subtract fractions with different denominators Using a single bar model: Or using a comparison model: - Subtract mixed numbers	Continue to embed exchange a whole bar for a bar of fractions as shown in the final Year 5 example and below: $3 \frac{1}{4}-1 \frac{3}{4} \underset{\substack{\text { ycan't } \\ \text { tale anay } \frac{3}{4}}}{ }$ We need to represent it differently: $\begin{array}{r} 2 \frac{5}{4}-1 \frac{3}{4} \\ =1 \frac{2}{4} \text { or } 1 \frac{1}{2} \end{array}$ Apply bar modelling representations to help tackle scenario problems. On Monday she eats $\frac{2}{3}$ of a bag and gives $\frac{4}{5}$ of a bag to her friend. On Tuesday she eats $\frac{1}{3}$ bags and gives $\frac{2}{5}$ of a bag to her friend. What fraction of her sweets does Alex have left?

Fractions - equivalent fractions

Fractions - fractions of amounts

Fractions - multiplying fractions

Year 5	Year 6
- multiply proper fractions and mixed numbers by whole numbers, supported by materials and diagrams - Multiply unit fractions by an integer applied on a numberline, particularly if the fraction becomes greater than one. $\frac{1}{5} \times 7=$ Use the model to help you solve $3 \times \frac{2}{10}$ - Multiply non-unit fractions by an integer? $\frac{1}{10}$ $\frac{2}{10}$ $\frac{2}{10}$ $\frac{2}{10}$ 10 $\frac{2}{10}$ Partition your fraction to help you solve $2 \frac{3}{4} \times 3$ - Multiply mixed numbers by integers	- multiply simple pairs of proper fractions, writing the answer in its simplest form (e.g. $1 / 4 \times 1 / 2=1 / 8$) - multiply fractions by integers (build on skills from Year 5) Eva partitions $2 \frac{3}{5}$ to help her to calculate $2 \frac{3}{5} \times 3$ $\begin{array}{ll\|l\|} 2 \times 3=6 & & \\ \frac{3}{5} \times 3=\frac{9}{5}=1 \frac{4}{5} & \square & \square \\ 6+1 \frac{4}{5}=7 \frac{4}{5} & \square\|\|\|\square \square\| \square\| \square \square\| \square \square \square \\ \hline \end{array}$ - multiply fractions by fractions

Fractions - dividing fractions

Fractions - dividing fractions-Year 6

- Divide fractions by integers

Dividing fractions where the numerator is a multiple of the integer they are dividing by. Use the sharing method of division.
[Y6 White Rose document]

Dividing fractions where the numerator is NOT a multiple of the integer they are dividing by. Use knowledge of equivalent fractions to create a fraction where the numerator IS a multiple of the integer they are dividing by.

Structures of ratio and proportion are taught before Year 6 (but not explicitly as ratio) through the discussion of equal parts, sharing, and multiplication as repeated addition. The $1 / 4$ terminology of 'proportion' could be used before Year 6 when talking about fractions of wholes.

Division using ratio could be done using a 'one bar' method or 'comparative bars' (see below). We would encourage children to always use separative bars (the comparative method) because the different parts are easier to see and compare this way. Children who have particularly deep and secure understanding of ratio might be able to work flexibly and effectively using both.

The following examples focus on using bar models to problem solve with ratio problems in Year 6. All of the following examples use ratios comparing two amounts but could easily be adapted for triple ratios e.g. 1:3:4. For examples of how to use bar models for proportion, visit 'fractions of amounts' as proportion means 'part of a whole'.

Algebra

Defined as: knowing and applying the rules of calculation to find unknown variables and patterns.

Children should not become reliant on using bar models to solve equations. The most efficient method is to solve them algebraically.

Measurement

Measurement encompasses: time, money, weight/mass, length/height, capacity/volume, area and perimeter, conversions.

For most areas of measurement, all of the above bar modelling structures explored in this document can be manipulated and applied to calculations and problems where the values are units of measure.

For example:

- If adding values of money, refer to the year group's appropriate addition bar model structures.
- If finding a fraction of a length, refer to the year group's appropriate fraction of amounts bar model structures.
- If multiplying the mass of an object, refer to the year group's appropriate multiplication bar model structures.

Further structures can be used when problem solving with time and also when converting between units of measure (see below).

Measurement: Time

Year 3	Year 4	Year $5 \quad$ Year 6
Use bar models to help understand half and quarter hours and their relationship to being a fraction of 60 minutes.	Use bar models to help represent conversion between: - Hours and minutes, based on the understand that 1 hour is 60 minutes - minutes and seconds, based on the understanding 1 minute being 60 seconds.	Use bar modelling skills learned in Years 3 and 4 and apply these to reading time tables where durations need to be found or measures need to be converted between hours/minutes/seconds.

Year 5	Year 6
Children will need to be secure in their conversion between fractions and decimals to use these representations accurately. These representations can be applied to mass, length and millimetres/milligrams) as a precursor for the abstract method of calculating the conversions. - Convertina imperial units One inch is approximately 2.5 centimetres 1 inch $\approx 2.5 \mathrm{~cm}$ 1 kilogram is approximately 2 pounds $1 \mathrm{~kg} \approx 2 \mathrm{lbs}$	5 miles ≈ 8 kilometres [Y6 White Rose document] \uparrow Applying conversions to problems. Mo cycles 45 miles over the course of 3 days. On day 1, he cycles 16 km . On day 2 , he cycles 10 miles further than he did on day 1 How far does he cycle on day 3 ? Give your answer in miles and in kilometres. [Y6 White Rose document]

References

Thank you to the following sources of information that enabled the compilation of this document.

THIRD SPACE

LEARNING

- https://thirdspacelearning.com/blog/teach-bar-model-method-arithmetic-maths-wordproblems-ks1-ks2/
- The Ultimate Guide to Bar Modelling https://thirdspacelearning.com/resources/resourceultimate-guide-bar-modelling/

Juniper Edication

Primary Mathematics: Effective teaching of Ratio and Proportion. Online course [Paul Hargreaves]
https://www.ncetm.org.uk/Default.aspx?page=13\&module=res\&mode=100\&resid=44565\&

- https://whiterosemaths.com/resources/classroom-resources/barvember/
- https://whiterosemaths.com/resources/schemes-of-learning/primary-sols/

http://www.burlishpark.co.uk/wp-content/uploads/2018/11/bar-model-progression.pdf
'The importance of bar modelling' session slides.

Classroom

secrets
https://classroomsecrets.co.uk/year-6-algebra-worksheet-shape-puzzles/

