

SACRED HEART CATHOLIC PRIMARY SCHOOL & NURSERY

## **Calculation Policy**

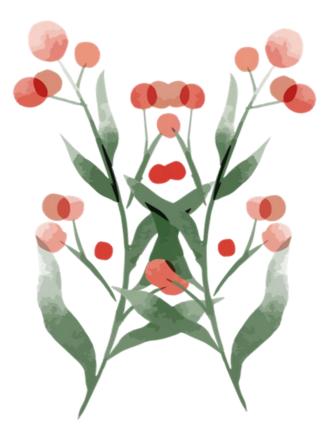
This is our school.

Together we worship; Together we learn; Together we belong. With the love of God, our dreams and ambitions come true.



## September 2023

Policy Date: September 2023 Policy Status: Statutory Policy Awaiting approval by Governing Body October 2023 Review Cycle: 18months or as required Next Review Date: January 2025 At Sacred Heart Catholic Primary School & Nursery we are proud to provide a safe, stimulating and inclusive learning environment where every member of our community is valued and respected.


## Mission Statement 'Together we worship, Together we learn, Together we belong – with the love of God... our dreams and ambitions come true.'

Our broad, balanced, creative curriculum and enrichment activities provide opportunities for everyone to achieve and succeed. Together we take pride in making a positive contribution to our school and the wider community.

This policy should be referred to in conjunction with the curriculum, assessment and teaching and learning policies.

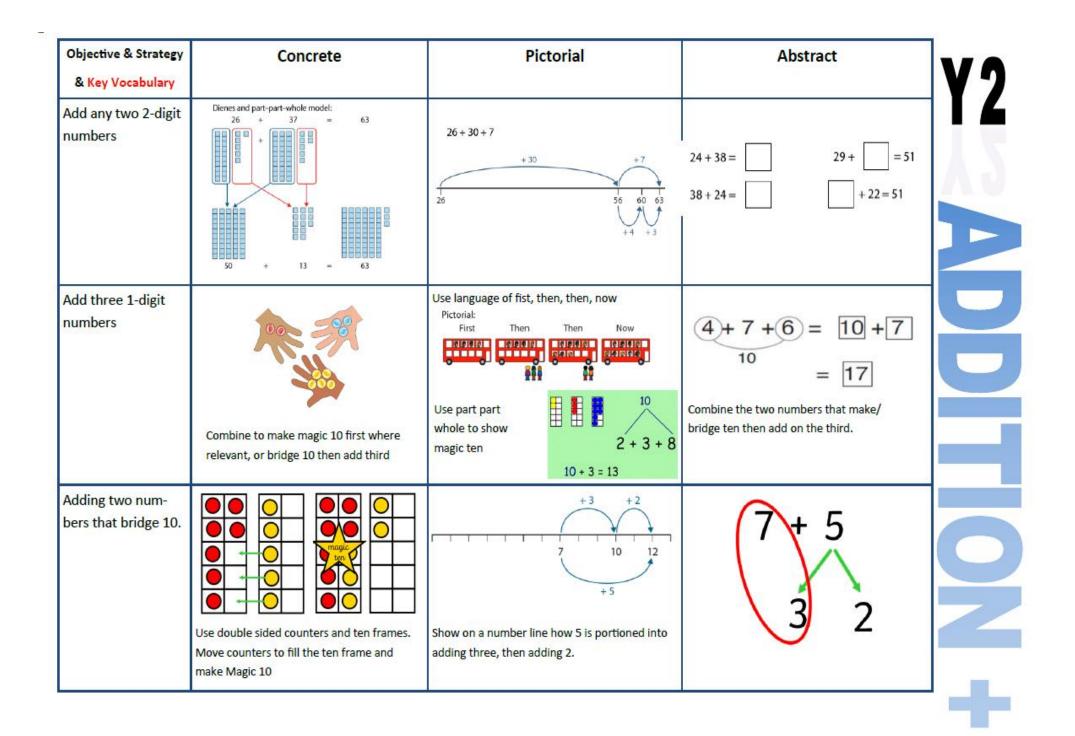
## SAFEGUARDING STATEMENT

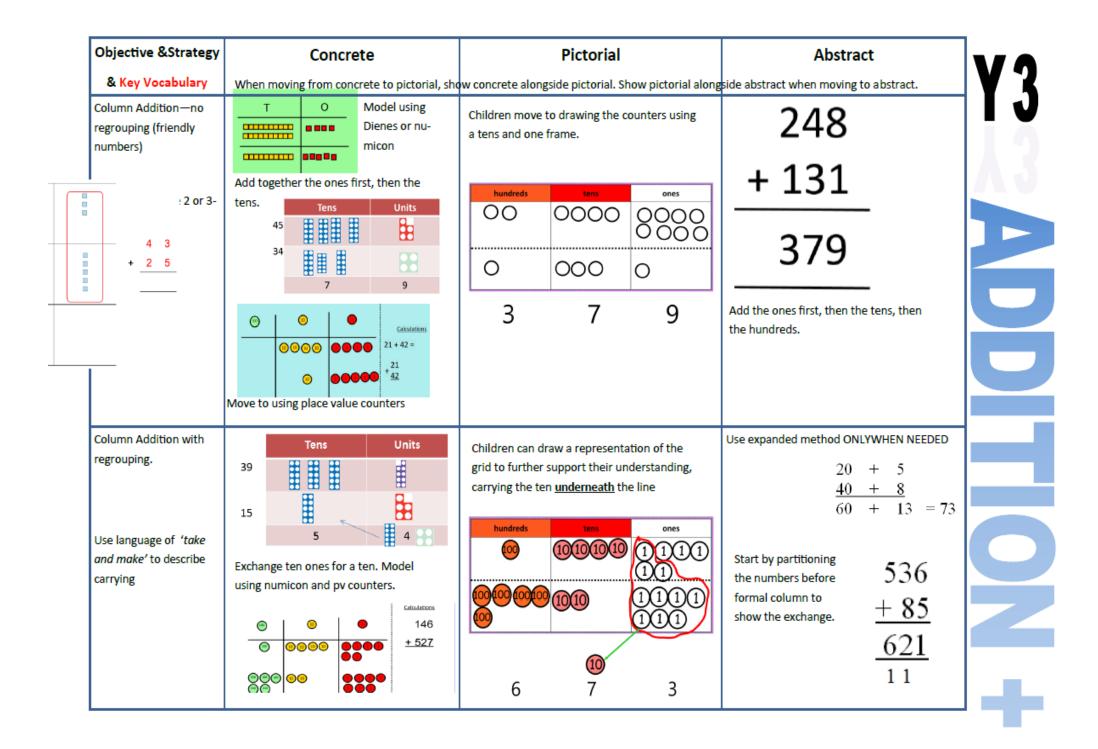
"Sacred Heart Catholic Primary School is committed to safeguarding and promoting the welfare of children and young people and expects all staff and volunteers to share this commitment".



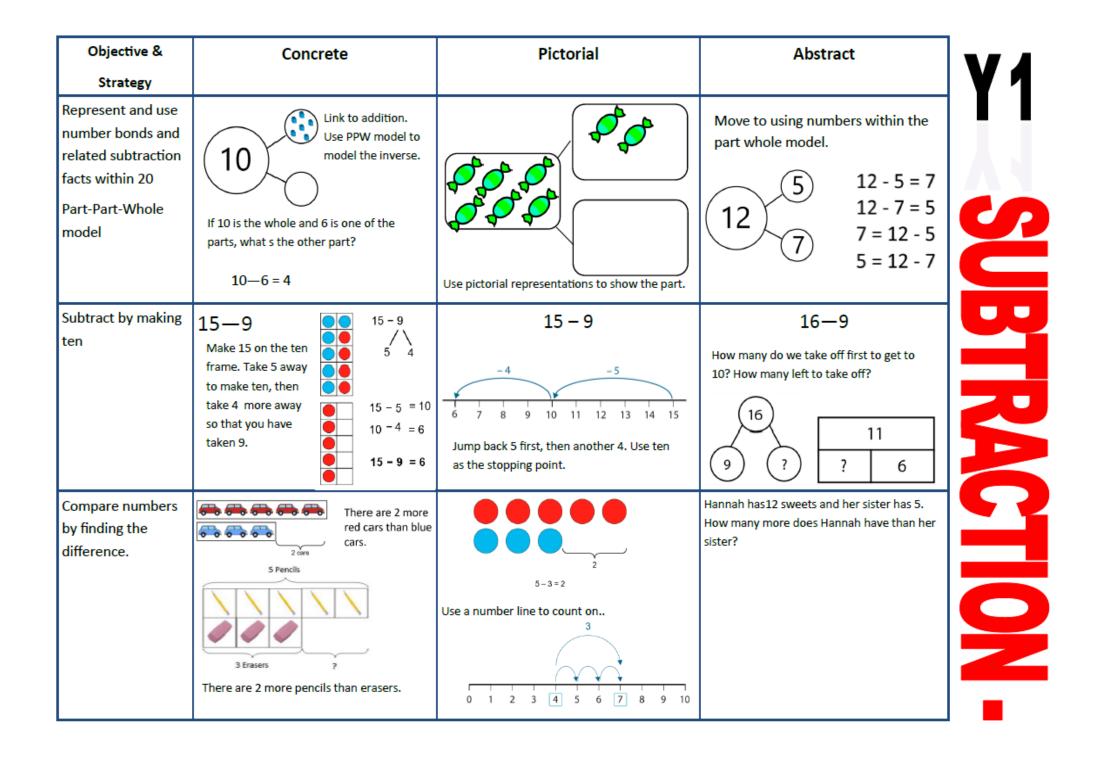
| Objective, Strategy<br>& Key Vocabulary                                                                | Concrete                                                                                                                                                                                                                                               | Pictorial                                             | Abstract                                                                                                                        | VA |
|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|----|
| Comparing Objects,<br>groups of objects<br>Length, weight,<br>mass, heavier, light-<br>er, same, equal | People's height, distance, mass.<br>Use of pan balances using numicon to show<br>equivalence, < ><br>Comparing multiple objects<br>Use of concrete materials eg. Compare<br>bears, jewels, cubes etc to create groups of<br>different sizes to compare |                                                       |                                                                                                                                 |    |
| Using < > and =<br>Fewer, more, less<br>than, more than,<br>equal to, fewer than                       | Use a multilink staircase<br>in two colours                                                                                                                                                                                                            |                                                       | Use variation with missing boxes and missing symbols.<br>$3 \bigcirc 4 \qquad 4 > \square$<br>$2 \bigcirc 2 \qquad \square < 6$ |    |
| Finding one<br>more, finding<br>one less                                                               |                                                                                                                                                                                                                                                        | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | One more/less sentences – example one:<br>1 more than 3 is<br>1 less than 2 is<br>1 more than is 1<br>1 less than is 1          |    |

| Objective, Strategy<br>& Key Vocabulary  | Concrete                                                                                                                                                                                                                                         | Pictorial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Abstract                                                             | VA |
|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----|
| Adding 1 gives 1<br>more                 | First Then Now                                                                                                                                                                                                                                   | First Then Now                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6 + 1 7<br>                                                          |    |
| Augmentation—<br>increasing an<br>amount | Use FIRST, THEN, NOW and range of<br>practical situations for showing augmen-<br>tation.<br>E.g. first there were three chn on carpet<br>then 2 more came. Now there are 5 chn<br>on the carpet.                                                 | First Then Now                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4 + 3 7 $4 + 3 = 7$                                                  |    |
| Stories of numbers<br>within 10          | Children should work with doubled sided<br>counters and ten frame.<br>Start with 7 red, turn one over, tell me the<br>'story'?<br>Turn one more over. What is the 'story'?<br>Continue.<br>Complete this for stories of all numbers up to<br>10. | $ \begin{array}{c}     \hline      \hline     \hline     \hline     \hline     \hline     \hline     \hline     \hline     \hline     \hline     \hline     \hline     \hline     \hline     \hline     \hline     \hline     \hline     \hline     \hline     \hline     \hline     \hline     \hline     \hline     \hline     \hline     \hline     \hline     \hline     \hline     \hline     \hline     \hline     \hline     \hline     \hline     \hline     \hline     \hline     \hline     \hline     \hline     \hline     \hline     \hline     \hline     \hline     \hline     \hline     \hline     \hline     \hline     \hline     \hline     \hline     \hline     \hline     \hline     \hline     \hline     \hline     \hline     \hline     \hline     \hline     \hline     \hline     \hline     \hline     \hline      \hline     \hline     \hline       $ | 7+0=7<br>6+1=7<br>5+2=7<br>4+3=7<br>3+4=7<br>2+5=7<br>1+6=7<br>0+7=7 |    |

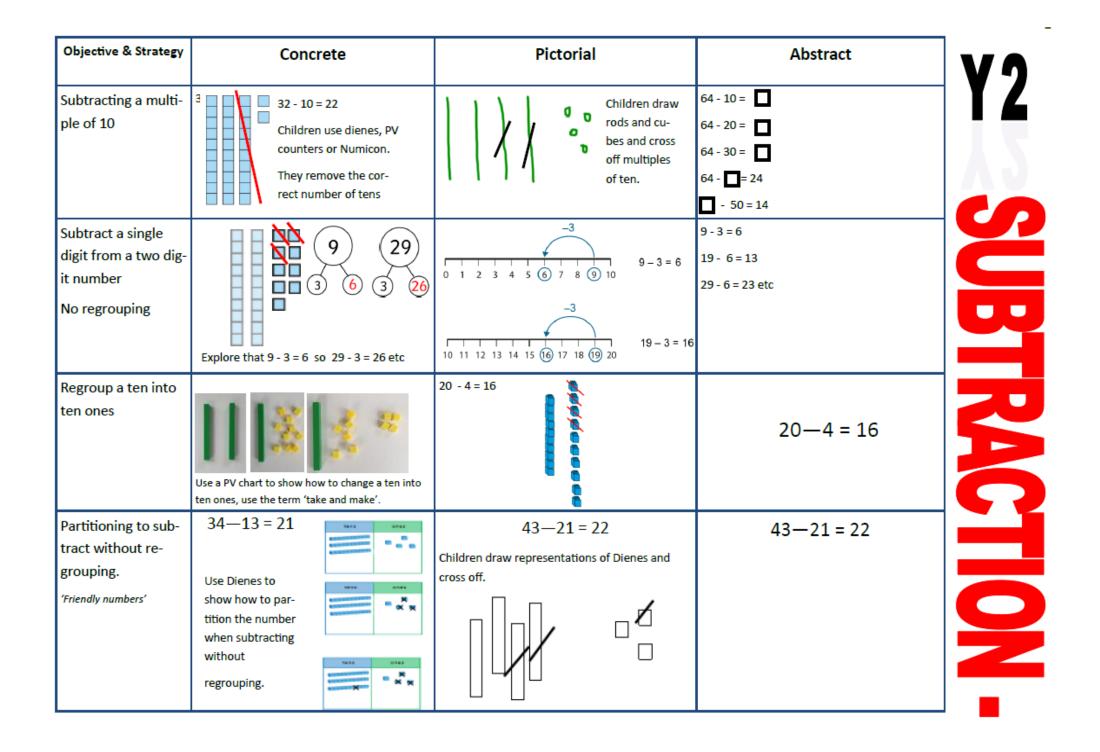

| Objective & Strategy                                                                  | Concrete                                                                                                     | Pictorial                                                                                                                                                                                                                                                 | Abstract                                                                                                               |  |
|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--|
| & Key Vocabulary<br>Combining two<br>parts to make a<br>whole: part- whole<br>model   | Use part part<br>whole model.<br>Use cubes to<br>add two num-<br>bers together<br>as a group or<br>in a bar. | 3     3       5     part       2     3       3     Balls       2     balls       3     Balls       2     balls       3     Balls       2     Balls       3     Balls       2     Balls   Use pictures to add two numbers together as a group or in a bar. | 4 + 3 = 7 $5$ $3$ $10 = 6 + 4$ Use the part-part<br>whole diagram as<br>shown above to move<br>into the abstract.      |  |
| Regrouping to make<br>10.<br>This is an essential skill for<br>column addition later. | = 11                                                                                                         | Start at the larger number on the number<br>line and count on in ones or in one jump to<br>find the answer.                                                                                                                                               | 7 + 4= 11<br>If I am at seven, how many more do I need to<br>make 10. How many more do I add on now?                   |  |
| Represent & use<br>number bonds and<br>related subtraction<br>facts within 20         | Start with the big-<br>ger number and<br>use the smaller<br>number to make<br>10.<br>Use ten frame           | Use pictures or a number line. Regroup or<br>partition the smaller number using the part<br>part whole model to make 10.<br>9+5=14<br>14<br>14<br>14<br>14<br>15 16 17 18 19 20<br>Craw 2 more hats<br>5+2 =                                              | Emphasis should be on the language<br>'1 more than 5 is equal to 6.'<br>'2 more than 5 is 7.'<br>'8 is 3 more than 5.' |  |

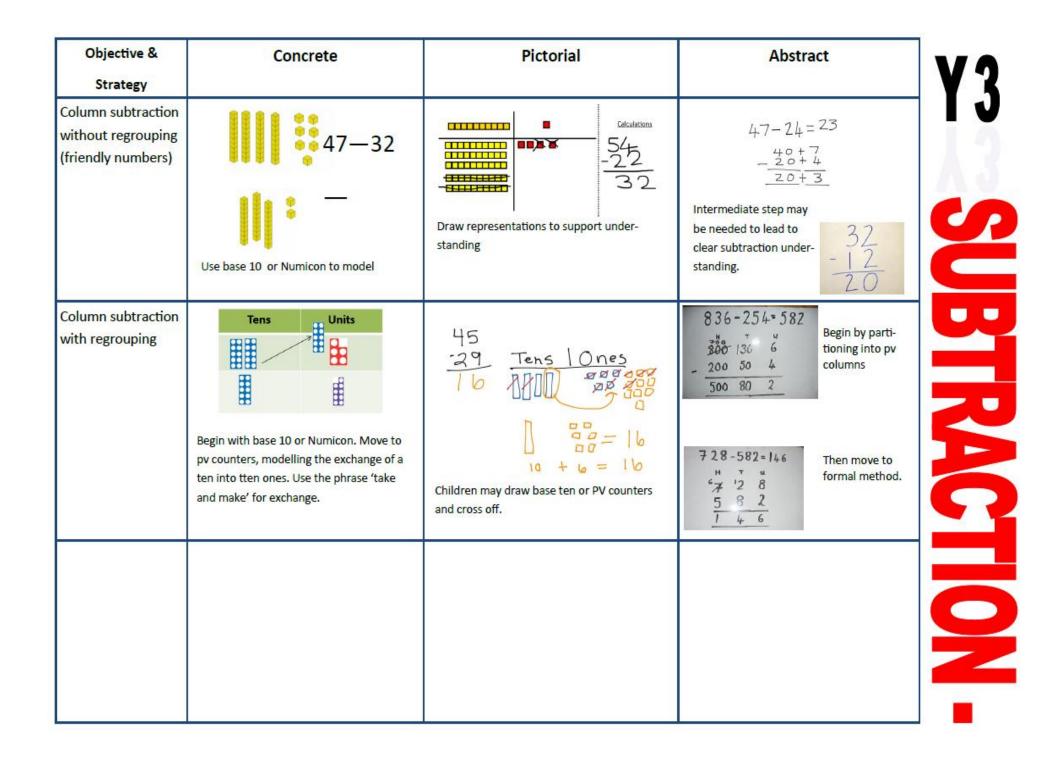

| Addin | g I and 2 |      | Bonds to | <mark>o 10</mark> | A      | dding 10  |       | Bridg<br>compen | -      |       | YI f    |       |
|-------|-----------|------|----------|-------------------|--------|-----------|-------|-----------------|--------|-------|---------|-------|
| Do    | oubles    |      | Adding   | g 0               | Nea    | ar double | s     |                 |        | I     |         | facts |
| +     | 0         | I    | 2        | 3                 | 4      | 5         | 6     | 7               | 8      | 9     | 10      |       |
| 0     | 0 + 0     | 0 +  | 0 + 2    | 0 + 3             | 0 + 4  | 0 + 5     | 0+6   | 0 + 7           | 0 + 8  | 0 + 9 | 0 + 10  |       |
| I     | I + 0     | +    | I + 2    | + 3               | +4     | I + 5     | l + 6 | + 7             | + 8    | I + 9 | + 10    |       |
| 2     | 2 + 0     | 2 +  | 2 + 2    | 2 + 3             | 2 + 4  | 2 + 5     | 2 + 6 | 2 + 7           | 2 + 8  | 2 + 9 | 2 + 10  |       |
| 3     | 3 + 0     | 3 +  | 3 + 2    | 3 + 3             | 3 + 4  | 3 + 5     | 3 + 6 | 3 + 7           | 3 + 8  | 3 + 9 | 3 + 10  |       |
| 4     | 4 + 0     | 4 +  | 4 + 2    | 4 + 3             | 4 + 4  | 4 + 5     | 4 + 6 | 4 + 7           | 4 + 8  | 4 + 9 | 4 + 10  |       |
| 5     | 5 + 0     | 5 +  | 5 + 2    | 5 + 3             | 5 + 4  | 5 + 5     | 5 + 6 | 5 + 7           | 5 + 8  | 5 + 9 | 5 + 10  |       |
| 6     | 6 + 0     | 6+   | 6 + 2    | 6 + 3             | 6 + 4  | 6 + 5     | 6+6   | 6 + 7           | 6 + 8  | 6 + 9 | 6 + 10  |       |
| 7     | 7 + 0     | 7 +  | 7 + 2    | 7 + 3             | 7 + 4  | 7 + 5     | 7 + 6 | 7 + 7           | 7 + 8  | 7 + 9 | 7 + 10  |       |
| 8     | 8 + 0     | 8 +  | 8 + 2    | 8 + 3             | 8 + 4  | 8 + 5     | 8 + 6 | 8 + 7           | 8 + 8  | 8 + 9 | 8 + 10  |       |
| 9     | 9 + 0     | 9+   | 9 + 2    | 9 + 3             | 9 + 4  | 9 + 5     | 9+6   | 9 + 7           | 9 + 8  | 9 + 9 | 9 + 10  | 2.    |
| 10    | 10 + 0    | 10+1 | 10 + 2   | 10 + 3            | 10 + 4 | 10 + 5    | 10+6  | 10 + 7          | 10 + 8 | 0+9   | 10 + 10 |       |

| Objective & Strategy      | Concrete                                     | Pictorial                                      | Abstract                                   |
|---------------------------|----------------------------------------------|------------------------------------------------|--------------------------------------------|
| & Key Vocabulary          |                                              |                                                |                                            |
| Adding multiples of       | 50= 30 + 20                                  | Image: line line line line line line line line | 20 + 30 = 50                               |
| ten                       | 11111                                        |                                                | 70 = 50 + 20                               |
|                           |                                              |                                                | 40 + 🗆 = 60                                |
|                           | Model using dienes and bead strings          | Use representations for base ten.              | □ + 30 = 50                                |
| Use known number<br>facts | Children ex-<br>plore ways of<br>making num- | 20                                             | 🗆 + 1 = 16 16 - 1 = 🗖                      |
| Part part whole           | art whole                                    | +   = 20 $20 -   =    +   = 20$ $20 -   =  $   | 1 + 🗆 = 16 16 - 🗆 = 1                      |
| Using known facts         | Ted Sam                                      | (1) + $(1)$ = $(1)$                            | 3 + 4 = 7                                  |
|                           |                                              | +      =                                       | Leads to                                   |
|                           |                                              |                                                | 30 + 40 = 70                               |
|                           |                                              |                                                | Leads to 300 + 400 + 700                   |
|                           |                                              | Children draw representations of H,T and O     | '3 things and 4 things is always 7 things' |
| Bar model                 |                                              | 8                                              | 30                                         |
|                           |                                              |                                                | 14 16                                      |
|                           | 3 + 4 = 7                                    | 3 + 5 = 8                                      | 14 + 16 = 30                               |


| Objective & Strategy                                                  | Concrete                                                                                                                           | Pictorial                                                                                                                      | Abstract                                                                                                                                                                      |                            |
|-----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| & Key Vocabulary                                                      |                                                                                                                                    |                                                                                                                                |                                                                                                                                                                               | V 7                        |
| Add a two digit<br>number and ones                                    | 17 + 5 = 22         Use ten frame to make 'magic ten         Children explore the pattern.         17 + 5 = 22         27 + 5 = 32 | Use part part<br>whole and<br>number line<br>to model.<br>17 + 5 = 22<br>3 2<br>20<br>17 + 5 = 22<br>20                        | 17 + 5 = 22 $22$ $17$ $5$ Explore related facts $17 + 5 = 22$ $17 + 5 = 22$ $22 = 17 + 5$ $5 + 17 = 22$ $22 = 5 + 17$ $22 - 17 = 5$ $17 = 22 - 5$ $22 - 5 = 17$ $5 = 22 - 17$ |                            |
| Add a 2 digit num-<br>ber and tens                                    | 25 + 10 = 35<br>Explore that the ones digit does not change                                                                        | 25 + 30 = 55 $+10 + 10 + 10$ $25 - 35 - 45 - 55$                                                                               | 27 + 10 = 37<br>27 + 20 = 47<br>$27 + \Box = 57$<br>$\Box + 30 = 67$                                                                                                          |                            |
| Add two 2-digit<br>numbers without<br>bridging.<br>'Friendly numbers' | Model using dienes , place value counters<br>and numicon<br>Dienes and part-part-whole model:<br>45 + 23 = 68<br>100 + 8 = 68      | 47 	 67 	 72 	 0r 	 20 	 3 	 2 47 	 67 	 72 	 47 	 67 	 70 	 72  Use number line and bridge ten using part whole if necessary. | 25 + 47<br>20 + 5 	 40 + 7<br>20 + 40 = 60<br>5 + 7 = 12<br>60 + 12 = 72                                                                                                      | T<br>T<br>T<br>T<br>T<br>T |

\_

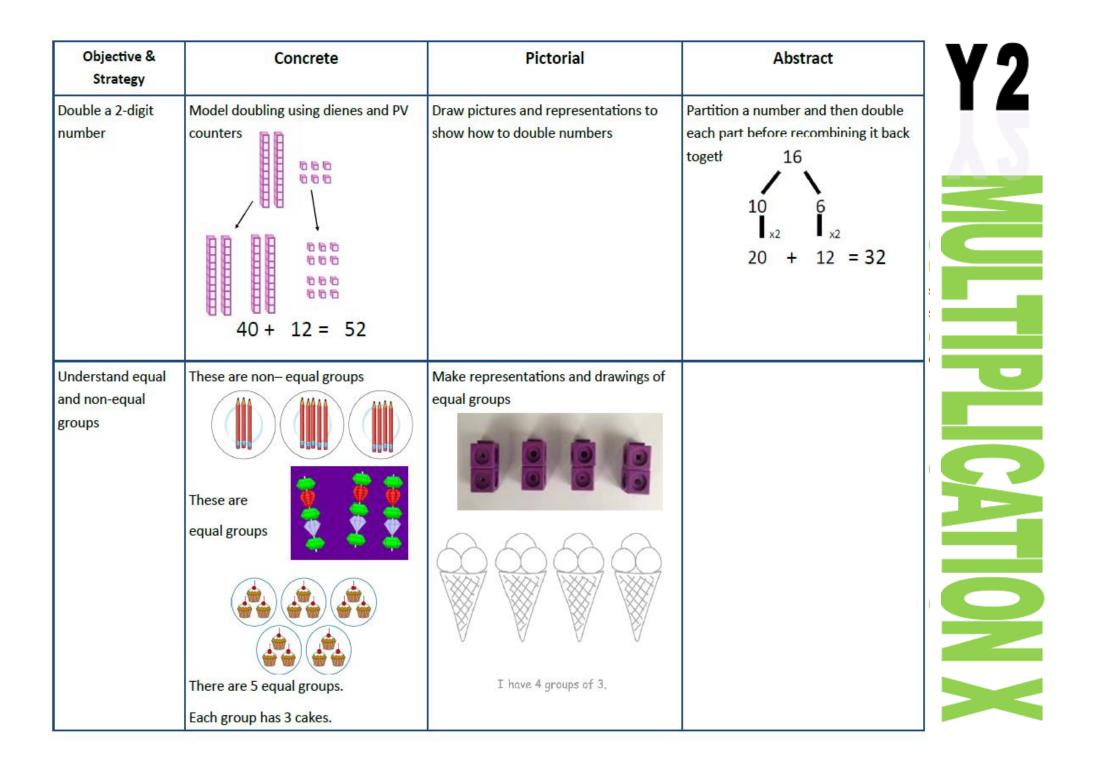


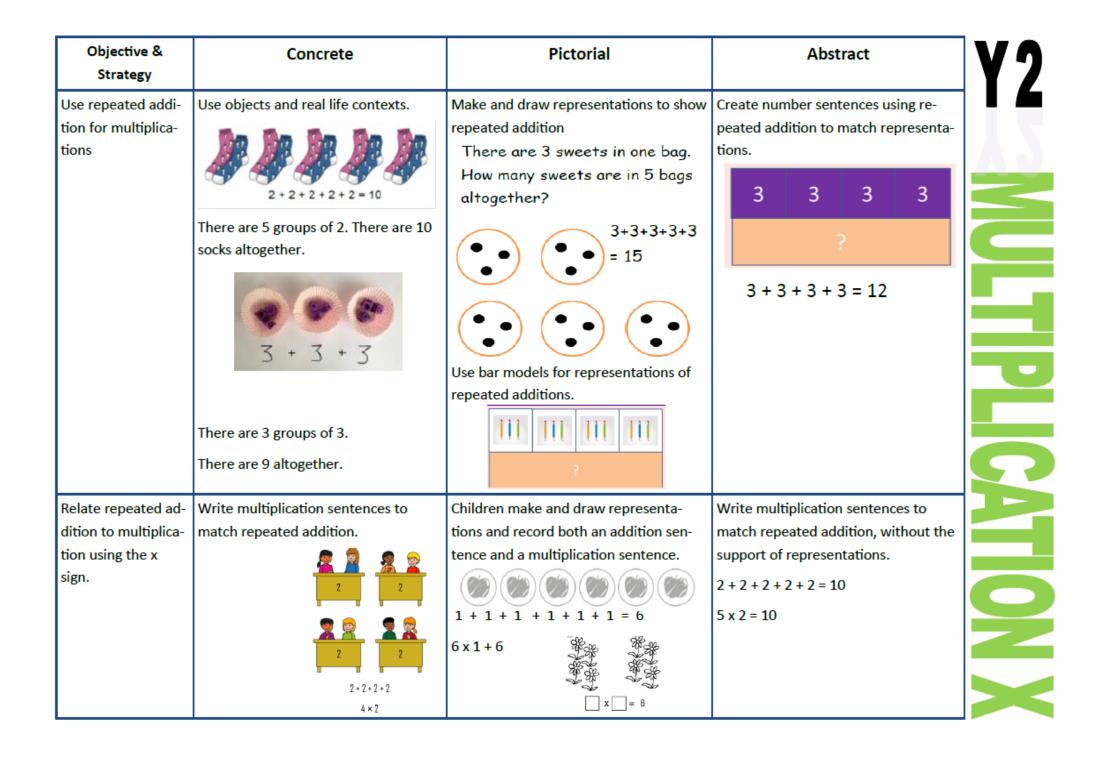



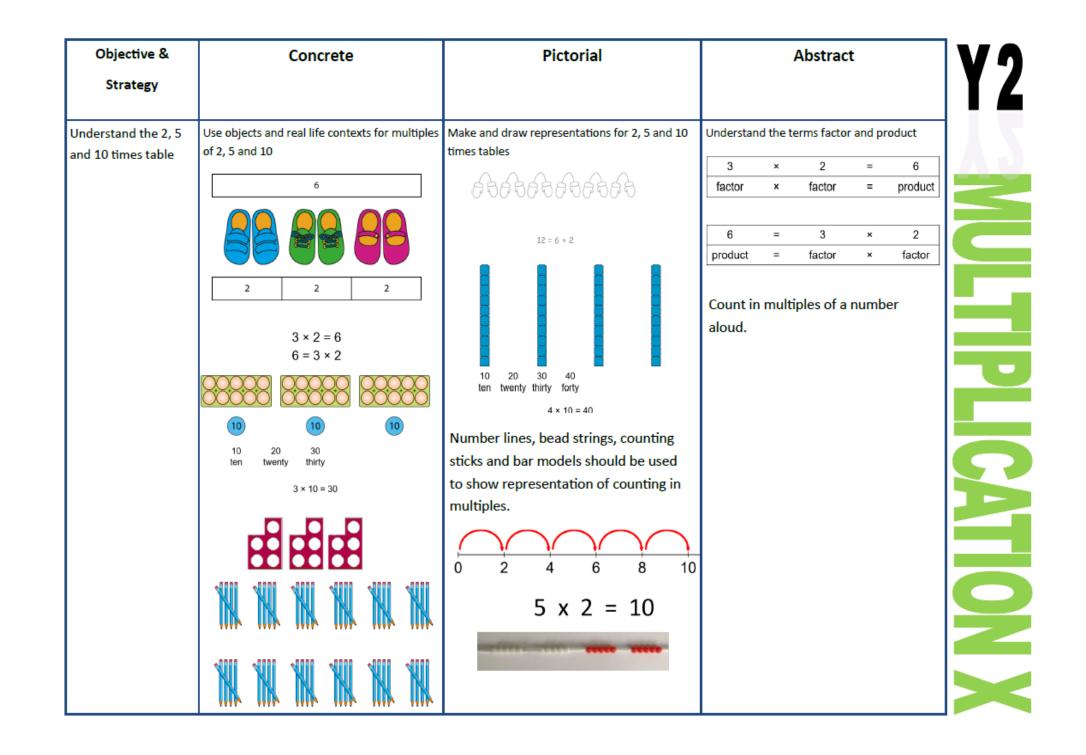

| Objective & Strategy<br>& Key Vocabulary                                                                     | Concrete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Pictorial                                                                                                                                                 | Abstract                                                                                                      | A V  |
|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|------|
| Y4—add numbers with<br>up to 4 digits                                                                        | Children continue to use dienes or pv<br>counters to add, exchanging ten ones for<br>a ten and ten tens for a hundred and ten<br>hundreds for a thousand.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •• •• ••                                                                                                                                                  | 2634<br>+ 4517                                                                                                | 14"V |
|                                                                                                              | tessards         hundreds         tess         ones           color         6000000         600000         10000           color         6000000         600000         10000           color         6000000         10         10000           color         6000000         10         10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7 1 5 1                                                                                                                                                   | $\frac{\frac{1}{7141}}{\frac{1}{1}}$                                                                          |      |
|                                                                                                              | Incurrets         Incurrets         Incurrets         Orms           Image: Constraint of the state of the stat | Oraw representations using pv grid.                                                                                                                       | Continue from previous work to carry<br>ones, tens and hundreds.<br>Relate to money and measures.             | 6    |
| Y5—add numbers with<br>more than 4 digits.                                                                   | As year 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.37 + 81.79                                                                                                                                              | 22,634                                                                                                        |      |
| Add decimals with 2 dec-<br>imal places, including<br>money.                                                 | + (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | tens ones tents hundredts<br>00 000 0 0000 00000<br>00 0000 0 0000 0 000000 | $ \begin{array}{r} + \underline{15,673} \\ \underline{38,307} \\ 1 \\ 1 \\                             $      |      |
| Y6—add several num-<br>bers of increasing com-<br>plexity<br>Including adding money,<br>measure and decimals | Some children may need to ruse manipula-<br>tives and/or representations for longer. See<br>year 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                           | $ \begin{array}{c} 89,472\\ 63,673\\ +\underline{3,016}\\ 156,161\\ \underline{1111}\\ +3.020\\ \end{array} $ |      |
| with different numbers of decimal points.                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                           | Insert zeros for place holders. $\frac{4 \cdot 057}{1}$                                                       |      |



| Objective & Strategy                                                                                                                | Concrete                                                                                                                                                                                                                                         | Pictorial                                                                                                                        | Abstract                                                                                            |
|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| Subtracting by<br>making 10                                                                                                         | Make 15 on the $15 - 9 =$<br>ten frame. Take<br>5 away to make<br>ten, then take 4<br>more away so<br>that you have<br>taken 9.<br>15 - 9 =<br>15 - 5 = 10<br>10 - 4 = 6<br>15 - 9 = | 15 - 9 =<br>-4 $-56$ 7 8 9 10 11 12 13 14 15<br>Jump back 5 first, then another 4. Use ten<br>as the stopping point.             | 16 - 9 = How many do we take off first to get to 10? How many left to take off? $10 + 10 + 10 = 10$ |
| Counting on to next<br>ten<br>Progression should be<br>crossing one ten, crossing<br>more than one ten, cross-<br>ing the hundreds. | 34 - 28 = $34 - 28 =$ $34 - 28$ $34 - 28$ Use a bead bar or bead strings to model counting to next ten and the rest. $28  to  30  is  2, 30  to  34  is  4.  So,  34 - 28 = 6$                                                                   | Use a number line to count on to next ten<br>and then the rest.<br>Begin with bead line, move to landmarked<br>line then to ENL. | 93-76 = 17<br>$76 \rightarrow 80 = 4$<br>$80 \rightarrow 93 = 13$<br>13 + 4 = 17                    |
| Subtractions as<br>difference                                                                                                       | Ben is ten years old<br>10 years old<br>3 years old<br>difference of 7 years                                                                                                                                                                     | $ \begin{array}{c} 7 \\ 4 \\ 3 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \end{array} $                             | The difference between 24<br>and 16 is 8.                                                           |

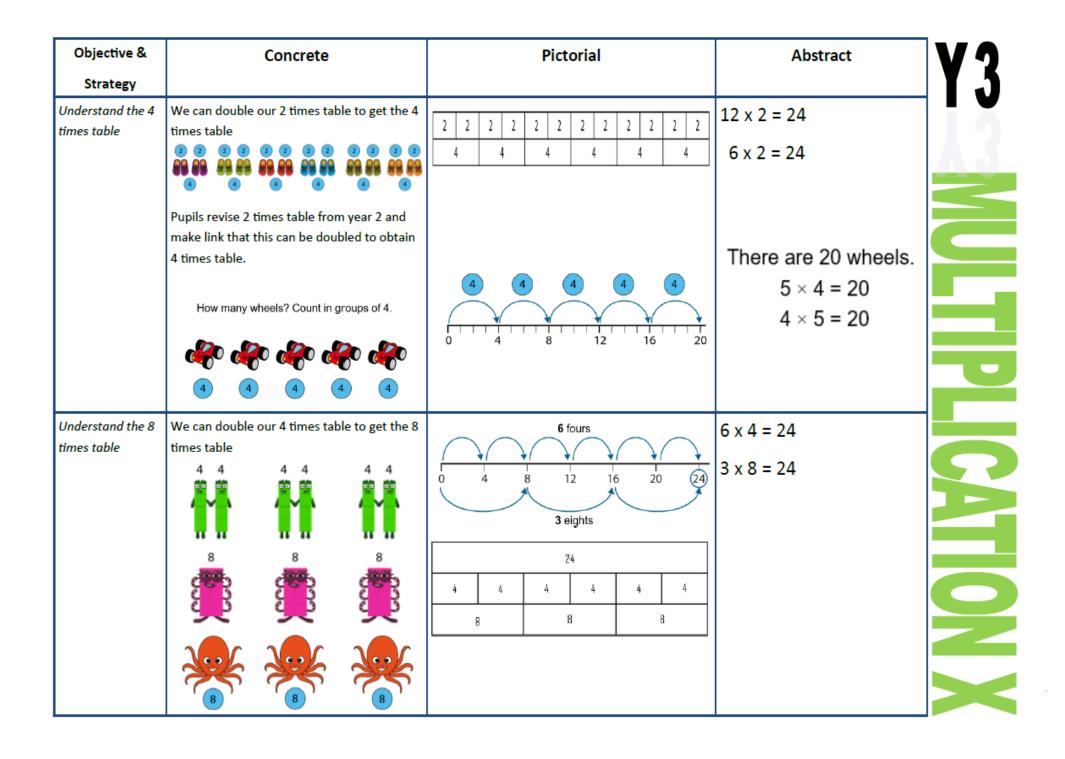




| Objective &<br>Strategy                                                                                                                                                                                    |           | Conc        | rete | Pictorial                                                      | Abstract                                                                                                                    | V/LG |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------|------|----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|------|
| Subtracting tens<br>and ones<br>Year 4 subtract with<br>up to 4 digits.<br>Introduce decimal subtrac-<br>tion through context of<br>money                                                                  |           | ess of exch | 179  | Children to draw pv counters and show their<br>exchange—see Y3 | 2     X     5     4       -     1     5     6     2       1     1     9     2   Use the phrase 'take and make' for exchange |      |
| Year 5- Subtract<br>with at least 4 dig-<br>its, including money<br>and measures.<br>Subtract with decimal<br>values, including mixtures<br>of integers and decimals<br>and aligning the decimal<br>point. | As Year 4 |             |      | Children to draw pv counters and show their<br>exchange—see Y3 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                       | TRAC |
| Year 6—Subtract<br>with increasingly<br>large and more<br>complex numbers<br>and decimal values.                                                                                                           |           |             |      |                                                                | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                       |      |

| Objective &<br>Strategy     | Concrete                                                                                                                                                                             | Pictorial                                                                                                                                                         |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Double numbers<br>to 10     | Use practical activities using manipultives in-<br>cluding cubes and Numicon to demonstrate<br>doubling<br>+ $=$ $+$ $=$ $+$ $=$ $+$ $+$ $=$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ | Draw pictures and bar models to show how to double numbers Double 4 is 8 6 3 3                                                                                    |
| Counting in groups of 2     | Count in 2s using real life objects and contexts.                                                                                                                                    | Children make representations to show counting in multiples of 2.Count in multiples of a number aloud.                                                            |
| Counting in groups<br>of 10 | Use real life objects and contexts to count in groups of 10                                                                                                                          | Use and draw representations for counting in multiples of 10. Count in multiples of 10 aloud<br>10 aloud<br>Show jumps of 10 on a number line<br>0 10 20 30 40 50 |
| Counting in groups<br>of 5  | Use real life objects and contexts to count in groups of 5                                                                                                                           | Use and draw representations for counting in multiples of 5.<br>Count in 5s aloud.<br>0 5 10 15 20 25 30                                                          |

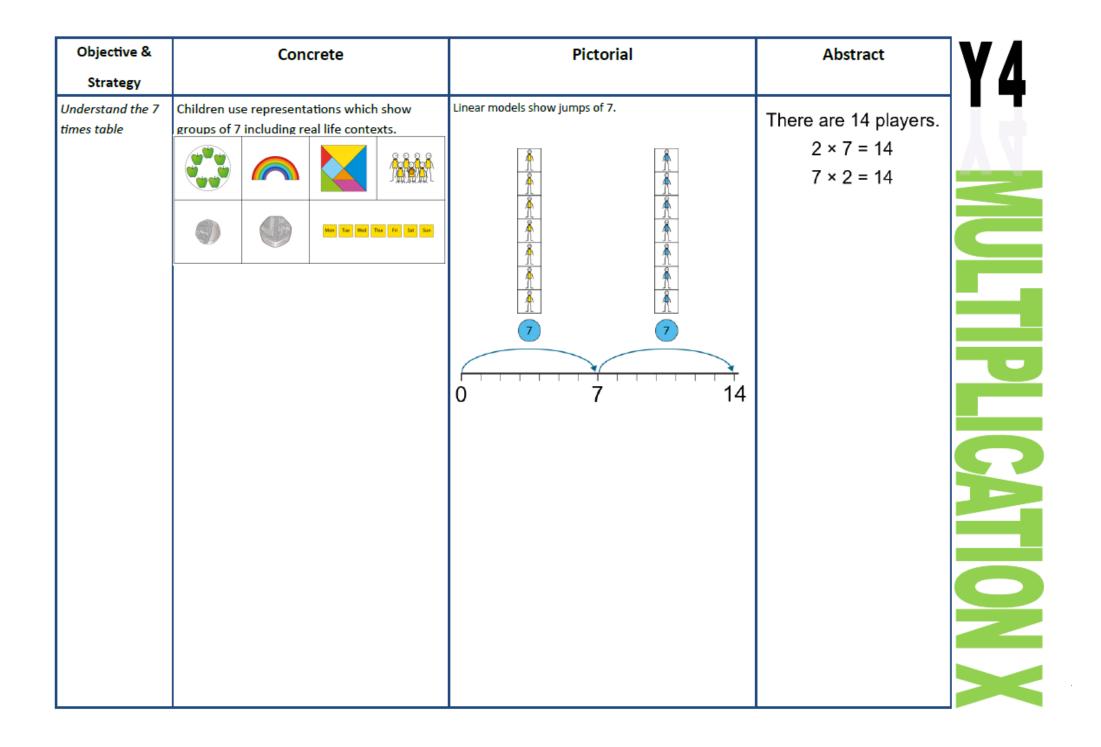
| Objective &                  | Concrete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Pictorial                                                                                          |
|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| Strategy                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                    |
| Understand and use<br>arrays | Use objects laid out in arrays to find the answers to 2 lots of 5, 3 lots of 2 etc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Make and draw representations of arrays to show understanding                                      |
| Equal/non equal<br>groups    | Use real life objects and contexts to examine equal and non-equal groups.     Image: Context of the equal groups of the equal gr | Children make/match representations of real life problems to show equal groups and find the total. |

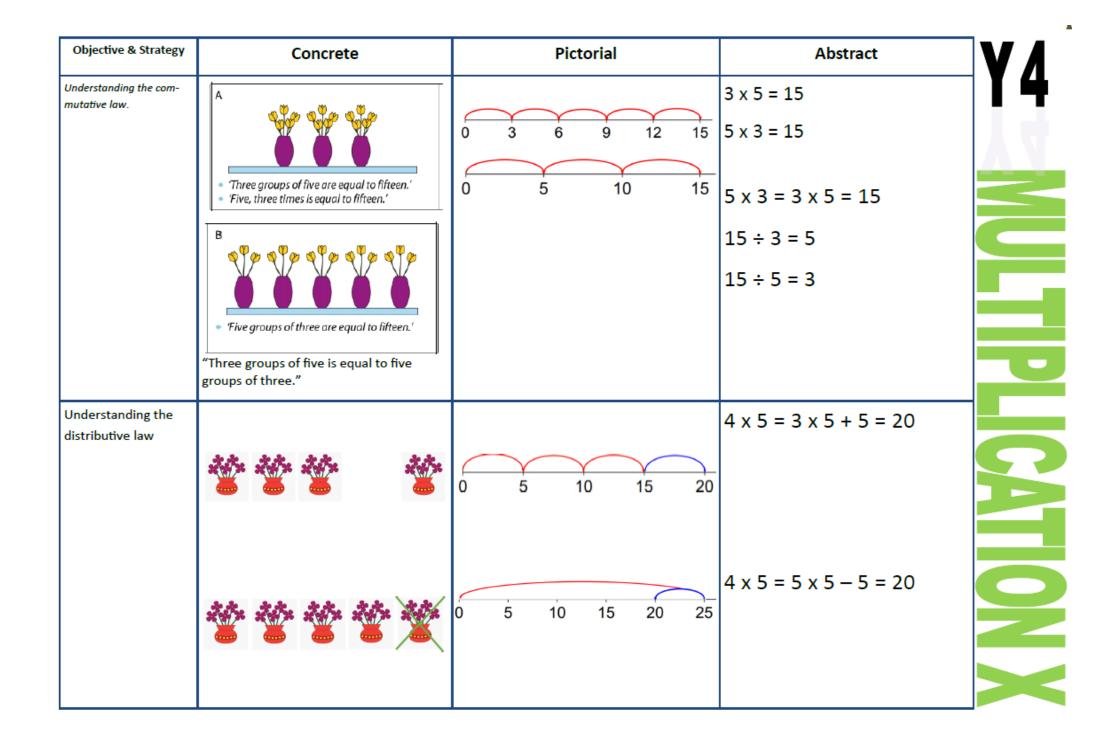


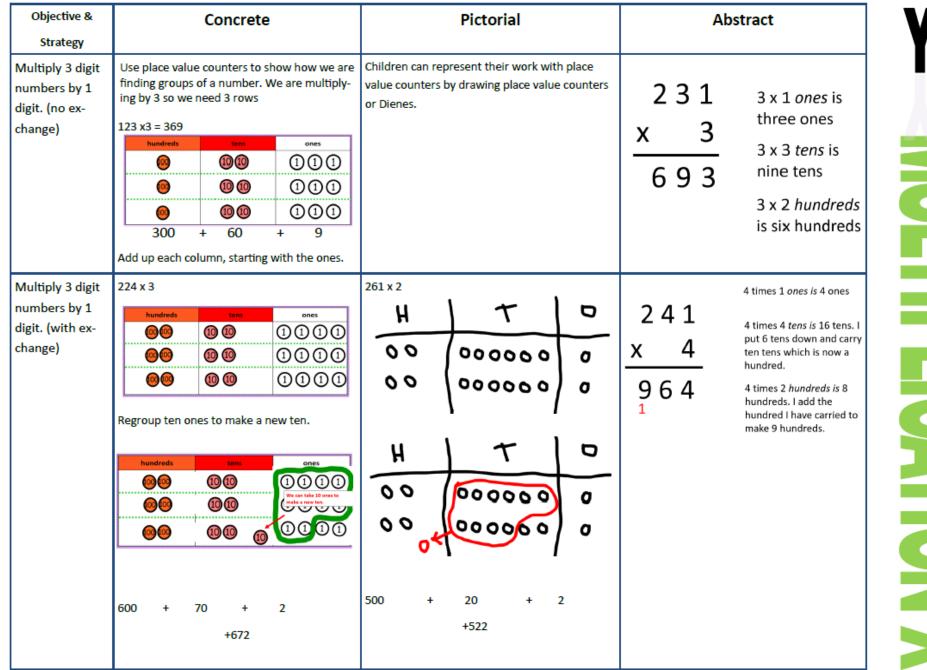





| Objective &<br>Strategy          | Concrete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Pictorial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Abstract                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Multiplication is<br>commutative | Create arrays using counters and cubes and Numicon.         Image: Create arrays using counters and cubes and Numicon.         Image: Create arrays using counters and cubes and Numicon.         Image: Create arrays using counters and cubes and Numicon.         Image: Create arrays using counters and cubes and Numicon.         Image: Create arrays using counters and cubes and numicon.         Image: Create arrays using counters and cubes and numicon.         Image: Create arrays using counters and that an array can represent different equations and that, as multiplication is commutative, the order of the multiplication does not affect the answer.         Image: Create arrays using counters and that, as multiplication is commutative, the order of the multiplication does not affect the answer.         Image: Create arrays using counters and that an array can represent different equations and that, as multiplication is commutative, the order of the multiplication does not affect the answer.         Image: Create arrays using counters arrays using counters and that arrays using counters arrays using counters arrays using counters arrays using counters are constrained at the answer.         Image: Create arrays using counters arrays using counters arrays using counters are | Use representations of arrays to show different calculations and explore commutativity.<br>Use representations of arrays to show different calculations and explore commutativity.<br>$5 \times 2 = 10$ $5 \times 2 =$<br>5 groups of 2 2 groups<br>2, five times 5, two times<br>5, two times 5, two times 5, two times<br>5, two times 5, two t | $12 = 3 \times 4$ $12 = 4 \times 3$ Use an array to write<br>multiplication sentences and<br>reinforce repeated addition. $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $00000$ $000000$ $000000$ $00000$ $00000$ $00000$ $000000$ $00000$ $00000$ |

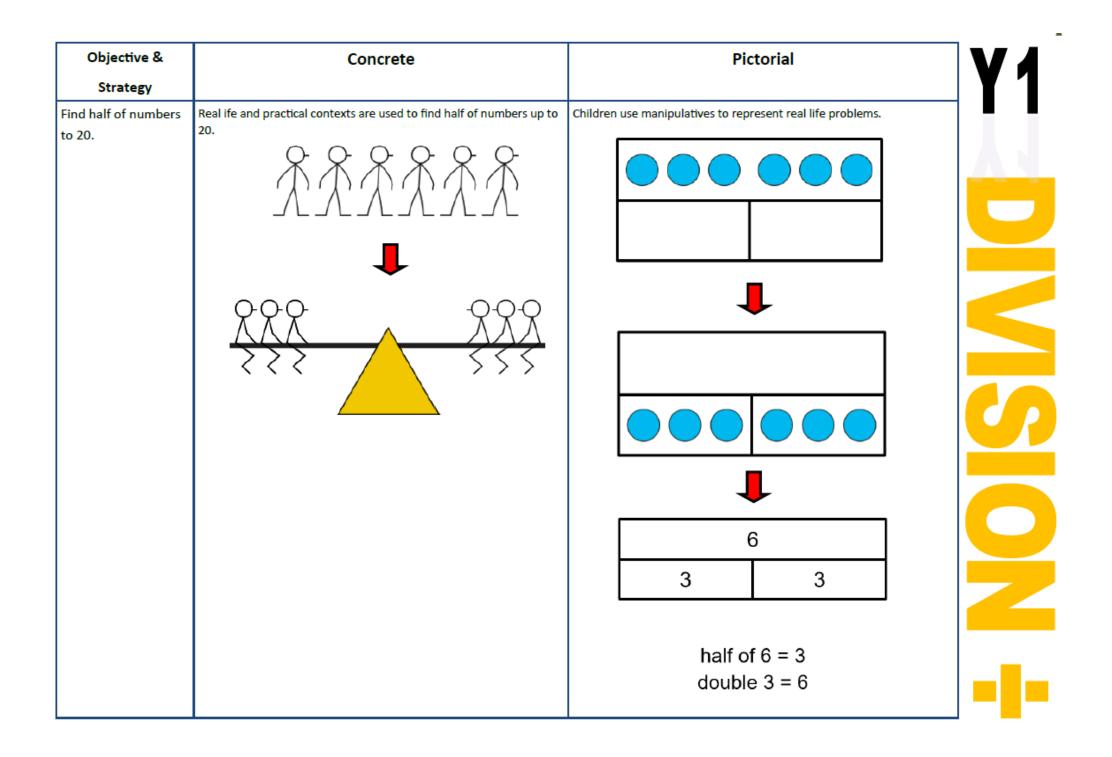

| Objective &                     | Concrete                                                                                                              | Pictorial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Abstract V <b>2</b>                              |
|---------------------------------|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| Strategy                        |                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | I J                                              |
| Understand the 3<br>times table | Count in three using objects and representa-<br>tions of multiples of 3.<br>3 3 3 3 3 3<br>3 3 3                      | $\begin{array}{c} 3 \\ \hline \\ 0 \\ \hline \\ 0 \\ \hline \\ 3 \\ \hline \\ 0 \\ \hline \\ 3 \\ \hline \\ 0 \\ \hline \\ 3 \\ \hline \\ 6 \\ \hline \\ 9 \\ \hline \\ 9 \\ \hline \\ 12 \\ 12$ | There are 12 wheels.<br>4 × 3 = 12<br>3 × 4 = 12 |
| Understand the 6<br>times table | We can double our 3 times table to find our<br>6 times table.<br>3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3                | 3     3     3     3     3     3     3     3     3     3       6     6     6     6     6     6     6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12 x 3 = 36<br>6 x 6 = 36                        |
| Understand the 9<br>times table | Count in nines using objects and representa-<br>tions of multiples of 9. Make links 9 being<br>three groups of three. | 9 9 9 9 9<br>0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | There are 36 apples.<br>4 × 9 = 36<br>9 × 4 = 36 |
|                                 |                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                  |

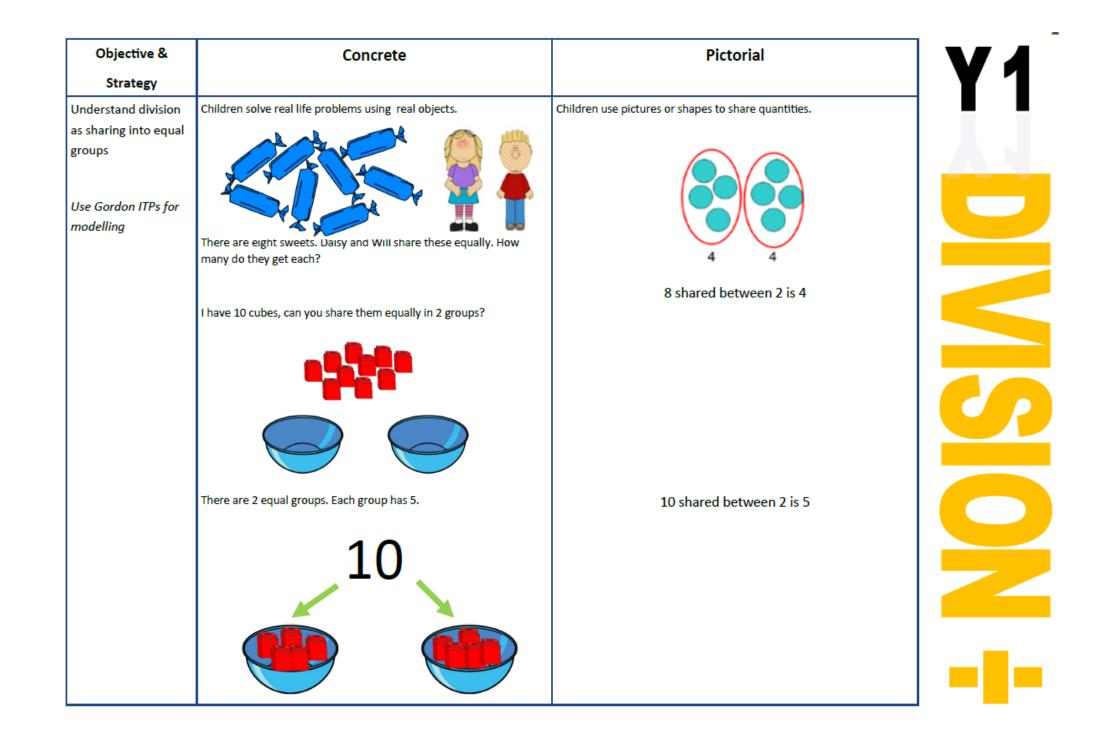


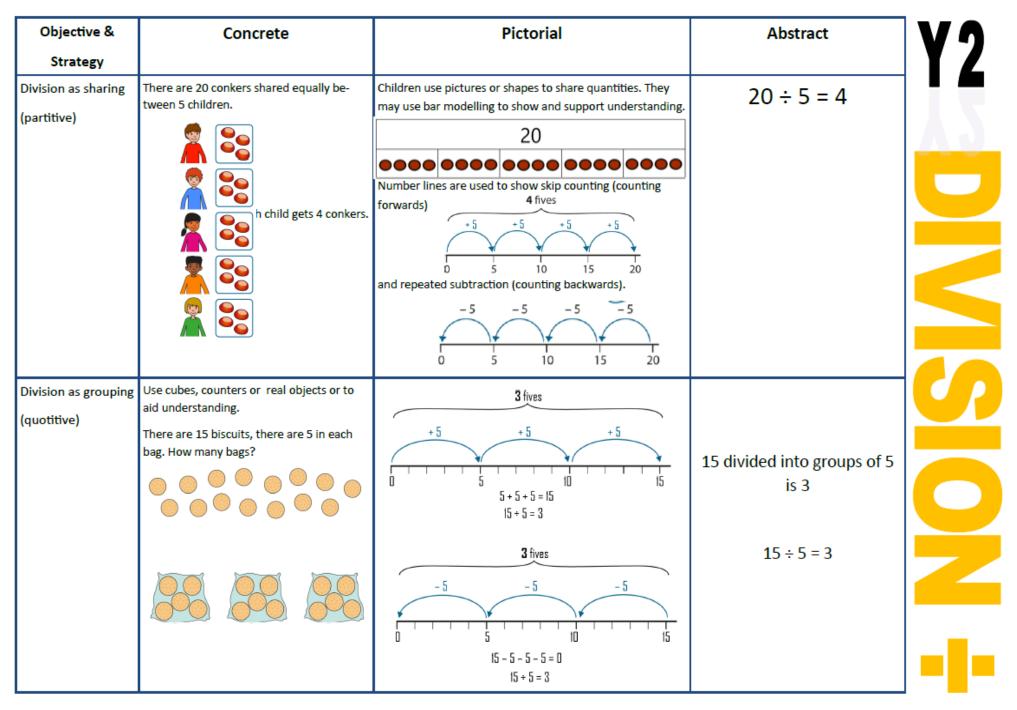


| Divis | ibility rules in 'families' – 2, 4 and 8                                                                                                                                                                                   |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2     | A number is divisible by 2 if the ones digit is even.                                                                                                                                                                      |
| 4     | If halving a number gives an even value, then<br>the number is divisible by 4.<br><i>and</i><br>For numbers with more than two digits: if the<br>final two digits are divisible by 4 then the<br>number is divisible by 4. |
| 8     | If halving a number twice gives an even value,<br>the number is divisible by 8.                                                                                                                                            |

| Objective &<br>Strategy                                                         | Concrete                                                                                                                                                                                                                                                                                                                                  | Concrete Pictorial Abstract                                                                                                                                                                                                                                                                                 |                                           |  |  |
|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--|--|
| Multiplying 2-digit<br>by 1 digit using par-<br>titioning<br>(distributive law) | Show the links with arrays to illustrate the<br>PV partitioning<br>4 rows<br>of 10<br>4 rows<br>of 3<br>Move onto base ten to move towards a<br>more compact method.<br>4 rows of 13<br>4 rows of 13<br>Move on to place value counters to<br>show how we are finding groups of a<br>number. We are multiplying by 4 so<br>we need 4 rows | Children can represent their work with<br>place value counters in a way that they un-<br>derstand.<br>They can draw the counters using colours to<br>show different amounts or just use the cir-<br>cles in the different columns to show their<br>thinking as shown below.<br>$\frac{24 \times 3 = 72}{4}$ | 4 x 10 = 40<br>4 x 3 = 12<br>40 + 12 = 52 |  |  |
| 2 digit x 1 digit using<br>PV counters<br>(no regrouping)                       | 23 x 3<br>tens ones<br>10 10 1 1 1<br>10 10 1 1 1<br>10 10 1 1 1<br>10 10 1 1<br>10 10 1<br>10 1 1<br>10 1 1<br>Chn can see array in the ones and the tens. There is a visual link to repeated addition.                                                                                                                                  | Children practice, drawing their representations.<br>$23 \times 3$<br>T<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                             | 23<br><u>x 3</u><br>69                    |  |  |

:6




| Objective &                            | Concrete                                                                                                                                                                                                                                | Pictorial                                                                       | Abstract                                                                                                                                                                                                                                   | VE              |
|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| Strategy                               |                                                                                                                                                                                                                                         |                                                                                 |                                                                                                                                                                                                                                            | Y h             |
| Multiply 3 and 4 digits x<br>1 digit.  | Children may continue to be supported by<br>place value counters at the stage of multipli-<br>cation. This initially done where there is no<br>regrouping.<br>3024 x 3<br>bundleds bus ones<br>0000 000 000 000 000 000 000<br>0000 000 | Children may continue to draw their under-<br>standing using place value grids. | 3 0 2 4<br><u>x 3</u><br>9 0 7 2                                                                                                                                                                                                           |                 |
| Multiply up to 4<br>digits by 2 digits | Manipulatives may still be used with the cor-<br>responding long multiplication modelled<br>alongside.<br>Begi with teen number x teen number.                                                                                          |                                                                                 | 1       8       18 x 3 on the first row         ×       1       3         5       4       (8 x 3 = 24, carrying the 2 for 20, then 1 x 3)         1       8       0         2       3       4         100s       10s         100s       1s | <b>IPLICATI</b> |
|                                        | Progress to any 2–4 digit number x 2 digit.                                                                                                                                                                                             |                                                                                 | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                     | <b>N</b> X      |

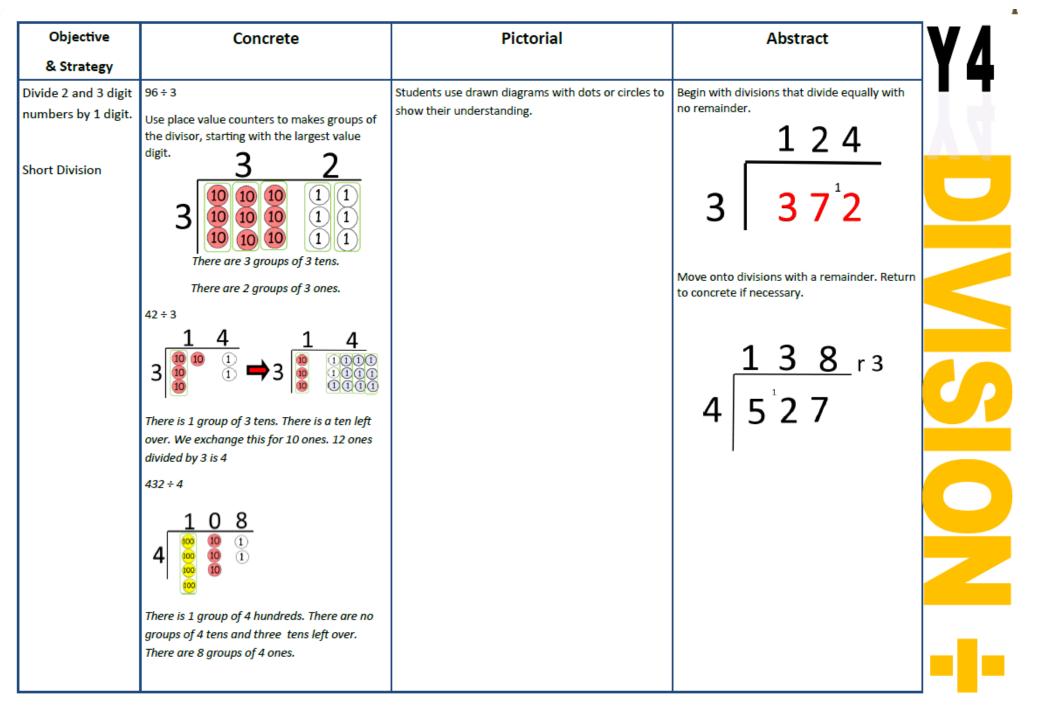
| Objective &                                                     | Concrete | Pictorial | Abstract                                                                                                                                                                                                                                                                                                                                                                                                         | VA        |
|-----------------------------------------------------------------|----------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Strategy                                                        |          |           |                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>Yh</b> |
| Multiply decimals up<br>to2 decimal places by<br>a single digit |          |           | $\begin{array}{c} 2.38 \\ \underline{x  3} \\ \hline 7  1  4 \\ 1  2 \end{array}$ First we lay out the calculation Next, we write the decimal point in the answer (product). Finally, we carry out the multiplication. $3 \times 8 \text{ hundredths is } 24 \text{ hundredths} \\ 3 \times 3 \text{ tenths is } 9 \text{ tenths, add } 2 \text{ tenths} \\ \text{we carried is } 11 \text{ tenths} \end{array}$ |           |
|                                                                 |          |           | 3 x 3 <i>ones</i> is 6 <i>ones</i> , add 1 <i>one</i> we carried is 7 <i>ones</i>                                                                                                                                                                                                                                                                                                                                |           |
| Multiply up to 4 digit<br>numbers by 2 digits.                  |          |           | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                            | CATION X  |







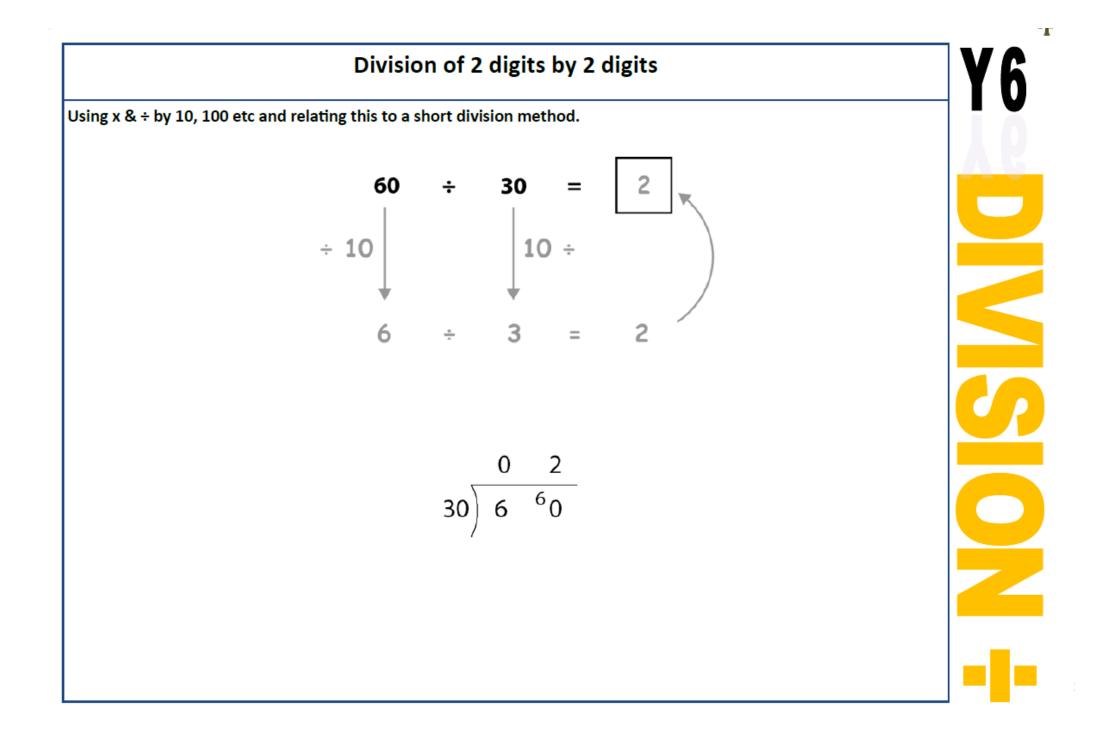
| Understanding the<br>Inverse $3 \times 4 = 12$<br>$12 \div 4 = 3$ $4 \times 3 = 12$<br>$12 \div 3 = 4$ | Objective &<br>Strategy | Concrete | Pictorial                                                                                                                                    | Abstract                                                                                                                                                                                              | <b>Y</b> 2 |
|--------------------------------------------------------------------------------------------------------|-------------------------|----------|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                  |                         |          | $\begin{array}{c} \times \\ \square \\ \times \\ \square \\ \times \\ \square \\ \end{array} = \\ \square \\ \div \\ \square \\ \end{array}$ | $12 \div 4 = 3$ $4 \times 3 = 12$ $12 \div 3 = 4$ $2 \times 4 = 8 \qquad 4 \times 2 = 8$ $8 \div 2 = 4 \qquad 8 \div 4 = 2$ $8 = 2 \times 4 \qquad 8 = 4 \times 2$ $2 = 8 \div 4 \qquad 4 = 8 \div 2$ |            |

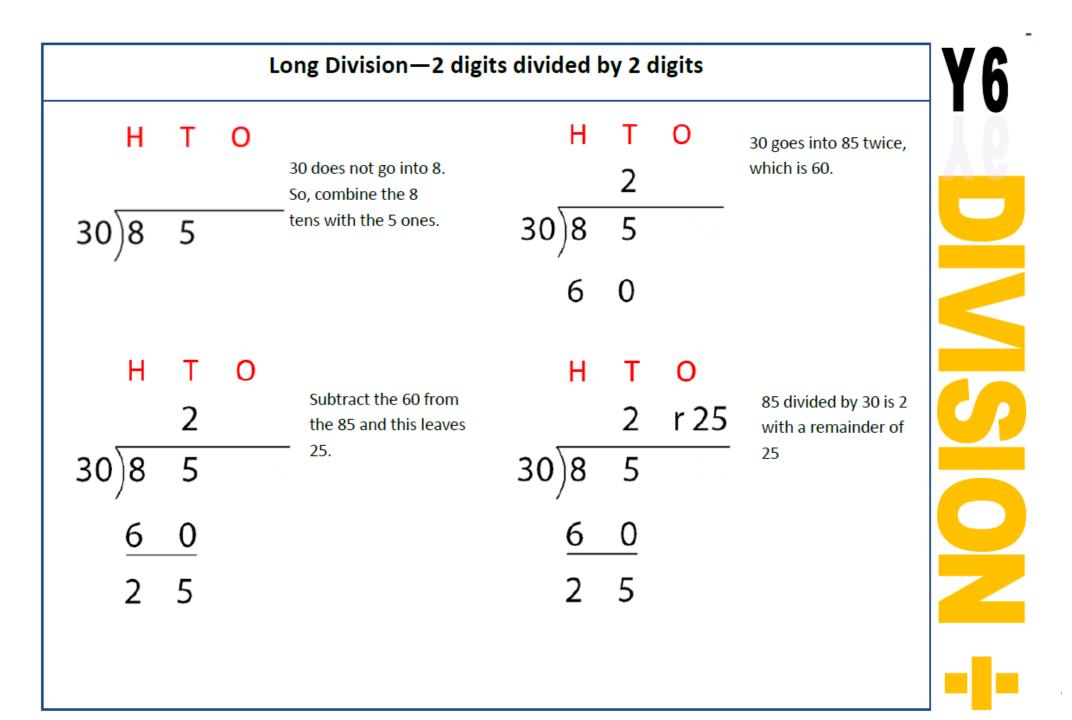

|                   |                                     |                                                        | ••                                      |
|-------------------|-------------------------------------|--------------------------------------------------------|-----------------------------------------|
| Objective &       | Concrete                            | Pictorial                                              | Abstract                                |
| Strategy          |                                     |                                                        |                                         |
| Division with     | I divide 14 cakes between 3 plates. | Draw dots and group them to divide an amount and       | Complete written divisions and show the |
| remainders.       | How are the cakes shared?           | clearly show a remainder.                              | remainder using r.                      |
| (partitive)       |                                     | $\bigcirc$                                             | 14.2.4.2                                |
|                   | <b></b>                             |                                                        | $14 \div 3 = 4 r 2$                     |
|                   | <u> </u>                            |                                                        | dividend divisor quotient remainder     |
|                   |                                     |                                                        |                                         |
|                   | $\mathbf{O}\mathbf{O}\mathbf{O}$    |                                                        |                                         |
|                   |                                     |                                                        |                                         |
|                   |                                     |                                                        |                                         |
|                   |                                     |                                                        |                                         |
|                   |                                     |                                                        |                                         |
| Division with re- | 13 eggs are put into boxes. Each    | Children may draw representations to show their under- | 13 ÷ 3 = 4 r 1                          |
| mainders.         | box holds 3 eggs. How are the       | standing.                                              |                                         |
| (quotitive)       | eggs boxed?                         |                                                        |                                         |
|                   | 000 000 000 000 0                   |                                                        |                                         |
|                   |                                     | Use bar models to show division with remainders.       |                                         |
|                   |                                     | 13                                                     |                                         |
|                   |                                     | 3 3 3 1                                                |                                         |
|                   |                                     |                                                        |                                         |
|                   |                                     |                                                        |                                         |
|                   |                                     |                                                        |                                         |
|                   |                                     |                                                        |                                         |
|                   |                                     |                                                        |                                         |

| Divis | sibility rules in 'families' – 3, 6 and 9                                                            |
|-------|------------------------------------------------------------------------------------------------------|
| 3     | For a number to be divisible by 3, the sum of the digits of the number must be divisible by 3.       |
| 6     | For a number to be divisible by 6, the number must be divisible by <i>both</i> 2 <i>and</i> 3.       |
| 9     | For a number to be divisible by 9, the sum<br>of the digits of the number must be divisible<br>by 9. |

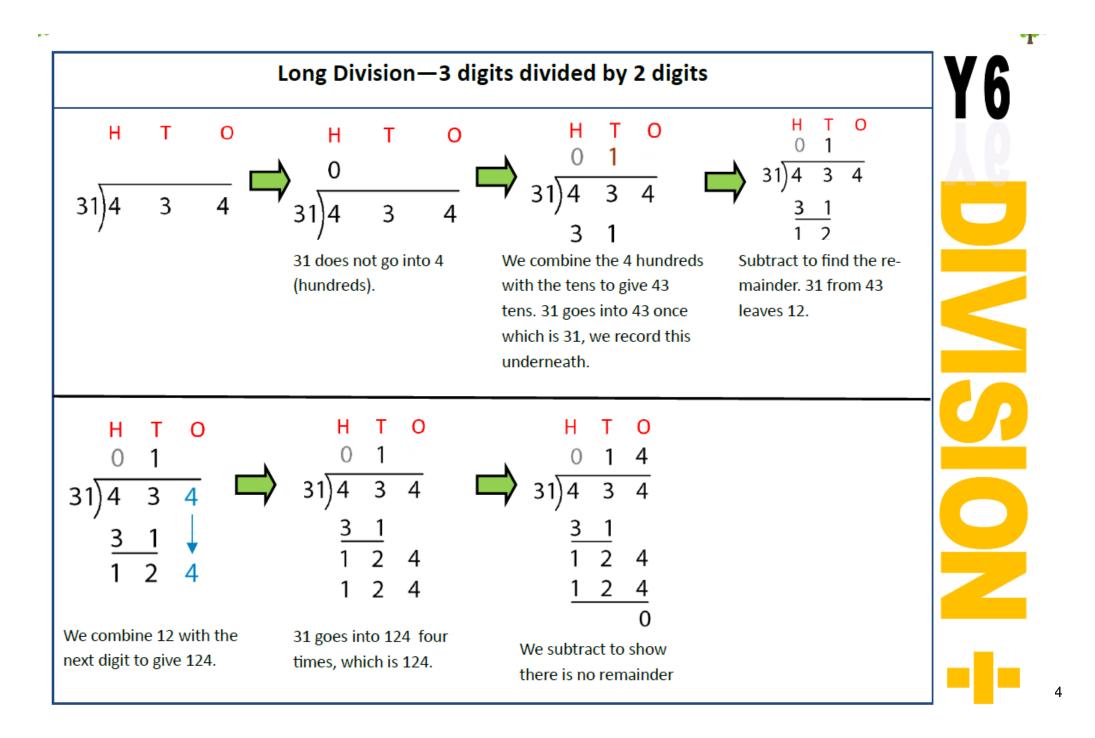
| Divis | Divisibility rules in 'families' – 5 and 10     |  |  |  |  |
|-------|-------------------------------------------------|--|--|--|--|
| 5     | A number is divisible by 5 if the ones digit is |  |  |  |  |
|       | 5 or 0.                                         |  |  |  |  |
| 10    | A number is divisible by 10 if the ones digit   |  |  |  |  |
|       | is 0.                                           |  |  |  |  |

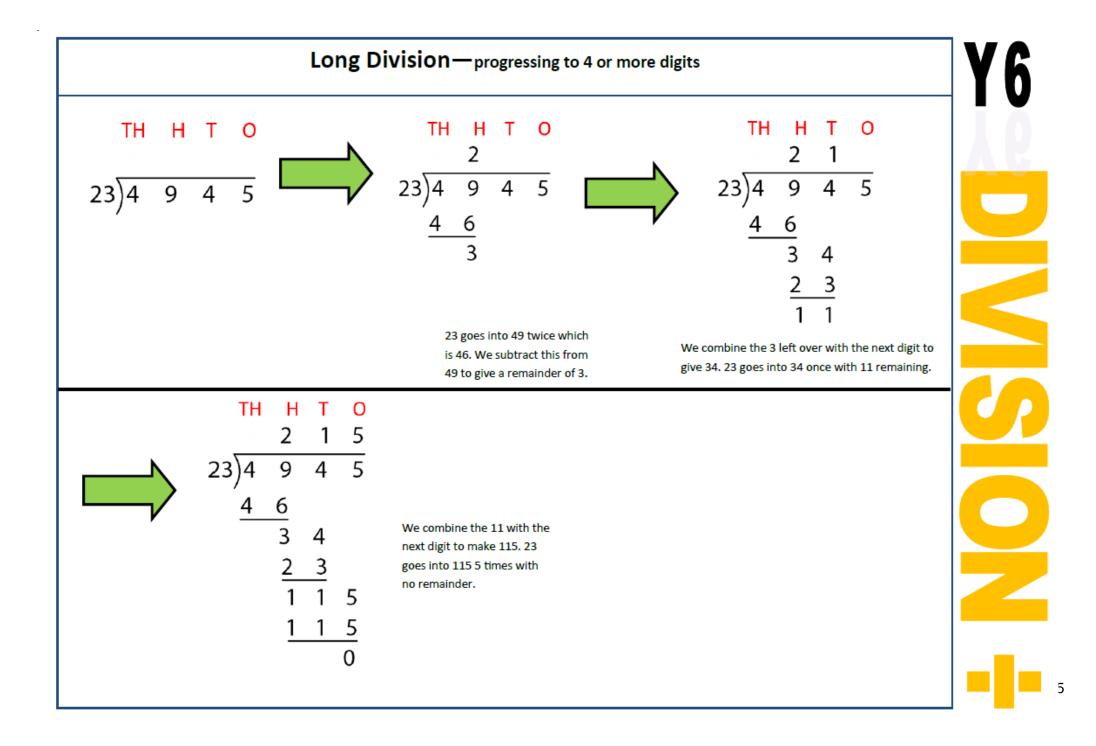
**Y**3 2 


| Objective &                                                | Concrete                                                                                                              |         |             | Picto      | rial |     |     | Abstract                                                                                                 | VI |
|------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|---------|-------------|------------|------|-----|-----|----------------------------------------------------------------------------------------------------------|----|
| Strategy<br>Interpreting divi-<br>sion with<br>remainders. | Bracelets are made using 4 beads. There<br>are 23 beads. How many bracelets can<br>be made? How many beads left over? | Bar mod | el represer | ntations m |      | d.  |     | 23 ÷ 4 = 5 r 3                                                                                           |    |
|                                                            |                                                                                                                       | 4       | 4           | 4          | 4    | 4   | 3   |                                                                                                          |    |
| Interpreting division with<br>remainders.                  | 4 scouts can fit in each tent. How many tents needed for 30 scouts?                                                   | 4       | 4 4         | 3(<br>1 4  | )    | 4 4 | 1 2 | 30 ÷ 4 = 7 r 2<br>8 tents are needed.<br>Discuss with pupils the<br>need to round up in this<br>context. |    |




| Divis | ibility rules in numerical order                      |
|-------|-------------------------------------------------------|
| 2     | A number is divisible by 2 if the ones digit is even. |
| 3     | For a number to be divisible by 3, the sum of the     |
|       | digits of the number must be divisible by 3.          |
| 4     | If halving a number gives an even value, then the     |
|       | number is divisible by 4.                             |
|       | and                                                   |
|       | For numbers with more than two digits: if the final   |
|       | two digits are divisible by 4 then the number is      |
|       | divisible by 4.                                       |
| 5     | A number is divisible by 5 if the ones digit is       |
|       | 5 or 0.                                               |
| 6     | For a number to be divisible by 6, the number must    |
|       | be divisible by <i>both</i> 2 <i>and</i> 3.           |
| 8     | If halving a number twice gives an even value, the    |
|       | number is divisible by 8.                             |
| 9     | For a number to be divisible by 9, the sum of the     |
|       | digits of the number must be divisible by 9.          |
| 10    | A number is divisible by 10 if the ones digit is 0.   |





| Objective                                                       | Concrete | Pictorial | Abstract                                                    |
|-----------------------------------------------------------------|----------|-----------|-------------------------------------------------------------|
| & Strategy                                                      |          |           |                                                             |
| Divide decimals by<br>a single digit, using<br>x and ÷ by 10 or |          |           | Pupils use understanding of x and ÷ 10 to make connections. |
| 100                                                             |          |           | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$       |
| Short division of<br>decimals                                   |          |           | Children build on work from year 4, now with decimals       |
|                                                                 |          |           | $0 \cdot 4  1$                                              |
|                                                                 |          |           | 6)2· <sup>2</sup> 4 6                                       |
|                                                                 |          |           |                                                             |
|                                                                 |          |           |                                                             |





.





| 1. Divide.                                                         | 2. Multiply & subtract.                                                                                   | 3. Drop down the next digit.                                                                                                                                                         |  |
|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| h t o<br>1<br>2 ) 2 7 8                                            | h t o<br>1<br>2 ) <mark>2</mark> 7 8<br><u>-2</u><br>0                                                    | h t o<br>1 8<br>2 ) 2 7 8<br><u>- 2</u> ↓<br>0 7                                                                                                                                     |  |
| Two goes into 2 one time, or 2 hundreds ÷ 2 = 1 hundred.           | Multiply $1 \times 2 = 2$ , write that 2 under<br>the two, and subtract to find the<br>remainder of zero. | Next, drop down the 7 of the tens next to the zero.                                                                                                                                  |  |
| Divide.                                                            | Multiply & subtract.                                                                                      | Drop down the next digit.                                                                                                                                                            |  |
| $     \frac{13}{2} \frac{2}{278} \frac{-2}{07} $                   | h t o<br><u>13</u><br>2)278<br><u>-2</u><br>07<br><u>-6</u><br>1                                          | $ \begin{array}{r}             h t \circ \\             1 3 \\             2 ) 2 7 8 \\             -2 \\             0 7 \\             -6 \\             1 8         \end{array} $ |  |
| Divide 2 into 7. Place 3 into the<br>quotient.                     | Multiply $3 \times 2 = 6$ , write that 6 under<br>the 7, and subtract to find the<br>remainder of 1 ten.  | Next, drop down the 8 of the ones<br>next to the 1 leftover ten.                                                                                                                     |  |
| 1. Divide.                                                         | 2. Multiply & subtract.                                                                                   | 3. Drop down the next digit.                                                                                                                                                         |  |
| h t o<br>1 3 <mark>9</mark><br>2) 2 7 8<br>-2<br>0 7<br>- 6<br>1 8 | h t o<br><u>1 3 9</u><br>2 ) 2 7 8<br><u>-2</u><br>0 7<br><u>-6</u><br><u>1 8</u><br><u>-1 8</u><br>0     | h t o<br>139<br>2)278<br>-2<br>07<br>-6<br>18<br>-18<br>0                                                                                                                            |  |
| Divide 2 into 18. Place 9 into the<br>quotient.                    | Multiply 9 × 2 = 18, write that 18<br>under the 18, and subtract to find the<br>remainder of zero.        | There are no more digits to drop<br>down. The quotient is 139.                                                                                                                       |  |

