

SACRED HEART CATHOLIC PRIMARY SCHOOL \& NURSERY

Calculation Policy

This is our school.
Together we worship; Together we learn; Together we belong.
With the love of God, our dreams and ambitions come true.

September 2023
Policy Date: September 2023
Policy Status: Statutory Policy
Awaiting approval by Governing
Body October 2023
Review Cycle: 18months or as requireo
Next Review Date: January 2025

At Sacred Heart Catholic Primary School \& Nursery we are proud to provide a safe, stimulating and inclusive learning environment where every member of our community is valued and respected.

Mission Statement 'Together we worship, Together we learn, Together we belong - with the love of God... our dreams and ambitions come true.'

Our broad, balanced, creative curriculum and enrichment activities provide opportunities for everyone to achieve and succeed. Together we take pride in making a positive contribution to our school and the wider community.

This policy should be referred to in conjunction with the curriculum, assessment and teaching and learning policies.

SAFEGUARDING STATEMENT

"Sacred Heart Catholic Primary School is committed to safeguarding and promoting the welfare of children and young people and expects all staff and volunteers to share this commitment".

Objective, Strategy \& Key Vocabulary	Concrete	Pictorial	Abstract
Adding 1 gives 1 more		Then Now	
Augmentationincreasing an amount	Use FIRST, THEN, NOW and range of practical situations for showing augmentation. E.g. first there were three chn on carpet then 2 more came. Now there are 5 chn on the carpet.	Now	
Stories of numbers within 10	Children should work with doubled sided counters and ten frame. Start with 7 red, turn one over, tell me the 'story'? Turn one more over. What is the 'story'? Continue. Complete this for stories of all numbers up to 10.	$7+0=7$ $6+1=7$ $5+2=7$ Complete for al numbers up to 10	$\begin{aligned} & 7+0=7 \\ & 6+1=7 \\ & 5+2=7 \\ & 4+3=7 \\ & 3+4=7 \\ & 2+5=7 \\ & 1+6=7 \\ & 0+7=7 \end{aligned}$

Objective \& Strategy \& Key Vocabulary	Concrete	Pictorial	Abstract
Combining two parts to make a whole: part- whole model	Use part part whole model. Use cubes to add two numbers together as a group or in a bar.		$4+3=7$ $10=6+4$ Use the part-part whole diagram as shown above to move into the abstract.
Regrouping to make 10. This is an essential skill for column addition later.	2 more than 5 .	Start at the larger number on the number line and count on in ones or in one jump to find the answer.	$7+4=11$ If I am at seven, how many more do I need to make 10. How many more do I add on now?
Represent \& use number bonds and related subtraction facts within 20	Start with the bigger number and use the smaller number to make 10. Use ten frame	Use pictures or a number line. Regroup or partition the smaller number using the part part whole model to make 10 . $9+5=14$	Emphasis should be on the language ' 1 more than 5 is equal to 6 .' ' 2 more than 5 is 7. ' ' 8 is 3 more than 5.'

```
Adding I and 2
```

Bonds to 10
Adding 10

Bridging/ compensating

Doubles

Adding 0
Near doubles

+	0	1	2	3	4	5	6	7	8	9	10
0	$0+0$	$0+1$	$0+2$	$0+3$	$0+4$	$0+5$	$0+6$	$0+7$	$0+8$	$0+9$	$0+10$
1	$1+0$	$1+1$	$1+2$	$1+3$	$1+4$	$1+5$	$1+6$	$1+7$	$1+8$	$1+9$	$1+10$
2	$2+0$	$2+1$	$2+2$	$2+3$	$2+4$	$2+5$	$2+6$	$2+7$	$2+8$	$2+9$	$2+10$
3	$3+0$	$3+1$	$3+2$	$3+3$	$3+4$	$3+5$	$3+6$	$3+7$	$3+8$	$3+9$	$3+10$
4	$4+0$	$4+1$	$4+2$	$4+3$	$4+4$	$4+5$	$4+6$	$4+7$	$4+8$	$4+9$	$4+10$
5	$5+0$	$5+1$	$5+2$	$5+3$	$5+4$	$5+5$	$5+6$	$5+7$	$5+8$	$5+9$	$5+10$
6	$6+0$	$6+1$	$6+2$	$6+3$	$6+4$	$6+5$	$6+6$	$6+7$	$6+8$	$6+9$	$6+10$
7	$7+0$	$7+1$	$7+2$	$7+3$	$7+4$	$7+5$	$7+6$	$7+7$	$7+8$	$7+9$	$7+10$
8	$8+0$	$8+1$	$8+2$	$8+3$	$8+4$	$8+5$	$8+6$	$8+7$	$8+8$	$8+9$	$8+10$
9	$9+0$	$9+1$	$9+2$	$9+3$	$9+4$	$9+5$	$9+6$	$9+7$	$9+8$	$9+9$	$9+10$
10	$10+0$	$10+1$	$10+2$	$10+3$	$10+4$	$10+5$	$10+6$	$10+7$	$10+8$	$10+9$	$10+10$
10											

Objective \& Strategy \& Key Vocabulary	Concrete	Pictorial	Abstract
Add a two digit number and ones	$17+5=22$ Use ten frame to make 'magic ten Children explore the pattern. $\begin{aligned} & 17+5=22 \\ & 27+5=32 \end{aligned}$	Use part part whole and number line to model.	22 22 17 17 Explore related facts $17+5=22$ $22=17+5$ $5+17=22$ $22=5+17$ $22-17=5$ $17=22-5$ $22-5=17$ $5=22-17$
Add a 2 digit number and tens	$25+10=35$ Explore that the ones digit does not change		$\begin{aligned} & 27+10=37 \\ & 27+20=47 \\ & 27+\square=57 \\ & \square+30=67 \end{aligned}$
Add two 2-digit numbers without bridging. 'Friendly numbers'	Model using dienes, place value counters and numicon	Use number line and bridge ten using part whole if necessary.	$\begin{gathered} 25+47 \\ 20+5 \quad 40+7 \\ 20+40=60 \\ 5+7=12 \\ 60+12=72 \end{gathered}$

Objective \& Strategy \& Key Vocabulary	Concrete	Pictorial	Abstract
Add any two 2-digit numbers	Dienes and patt-part-whole model:	$26+30+7$	$24+38=$ \square $29+\square=51$ $38+24=$ \square \square $+22=51$
Add three 1-digit numbers	Combine to make magic 10 first where relevant, or bridge 10 then add third	Use language of fist, then, then, now Pictorial: Use part part whole to show magic ten	$\begin{aligned} \frac{4+7+6}{10} & =10+7 \\ & =17 \end{aligned}$ Combine the two numbers that make/ bridge ten then add on the third.
Adding two numbers that bridge 10.	Use double sided counters and ten frames. Move counters to fill the ten frame and make Magic 10	Show on a number line how 5 is portioned into adding three, then adding 2.	

Objective \& Strategy	Concrete	Pictorial	Abstract
Represent and use number bonds and related subtraction facts within 20 Part-Part-Whole model	Link to addition. Use PPW model to model the inverse. If 10 is the whole and 6 is one of the parts, what s the other part? $10-6=4$	Use pictorial representations to show the part.	Move to using numbers within the part whole model. $\begin{aligned} & 12-5=7 \\ & 12-7=5 \\ & 7=12-5 \\ & 5=12-7 \end{aligned}$
Subtract by making ten	15-9 15-9 Make 15 on the ten frame. Take 5 away to make ten, then take 4 more away so that you have taken 9. $\begin{aligned} & 15-5=10 \\ & 10-4=6 \\ & 15-9=6 \end{aligned}$	$15-9$ Jump back 5 first, then another 4 . Use ten as the stopping point.	$16-9$ How many do we take off first to get to 10 ? How many left to take off?
Compare numbers by finding the difference.	There are 2 more red cars than blue cars. There are 2 more pencils than erasers.	 $5-3=2$ Use a number line to count on..	Hannah has 12 sweets and her sister has 5. How many more does Hannah have than her sister?

Objective \& Strategy	Concrete	Pictorial	Abstract
Subtracting by making 10	Make 15 on the 15-9 = ten frame. Take 5 away to make more away so $15-5=10$ that you have $10^{-4}=6$ taken 9. $15-9=6$	$15-9=$ Jump back 5 first, then another 4 . Use ten as the stopping point.	$16-9=$ How many do we take off first to get to 10 ? How many left to take off?
Counting on to next ten Progression should be crossing one ten, crossing more than one ten, crossing the hundreds.	34-28= $34-28$ Use a bead bar or bead strings to model counting to next ten and the rest. 28 to 30 is 2,30 to 34 is $4 . S o, 34-28=6$	Use a number line to count on to next ten and then the rest. Begin with bead line, move to landmarked line then to ENL.	$\begin{aligned} & 93-76=17 \\ & 76 \longrightarrow 80=4 \\ & 80 \longrightarrow 93=13 \\ & 13+4=17 \end{aligned}$
Subtractions as difference			The difference between 24 and 16 is 8 .

Objective \& Strategy	Concrete	Pictorial	Abstract
Subtracting a multi- ple of 10	$32-10=22$ Children use dienes, PV counters or Numicon. They remove the correct number of tens		$\begin{aligned} & 64-10=\square \\ & 64-20=\square \\ & 64-30=\square \\ & 64-\square=24 \\ & \square-50=14 \end{aligned}$
Subtract a single digit from a two digit number No regrouping	Explore that $9-3=6$ so $29-3=26$ etc	$9-3=6$ $19-3=16$	$\begin{aligned} & 9-3=6 \\ & 19-6=13 \\ & 29-6=23 \text { etc } \end{aligned}$
Regroup a ten into ten ones	Use a PV chart to show how to change a ten into ten ones, use the term 'take and make'.	$20-4=16$	$20-4=16$
Partitioning to subtract without regrouping. 'Friendly numbers'	$34-13=21$ Use Dienes to show how to partition the number when subtracting without regrouping.	$43-21=22$ Children draw representations of Dienes and cross off.	$43-21=22$

 Strategy	Concrete	Pictorial	Abstract
Column subtraction without regrouping (friendly numbers)	Use base 10 or Numicon to model	Draw representations to support understanding	$\begin{gathered} 47-24=23 \\ -20+7 \\ -20+4 \\ \hline 20+3 \\ \hline \end{gathered}$ Intermediate step may be needed to lead to clear subtraction understanding.
Column subtraction with regrouping	Begin with base 10 or Numicon. Move to pv counters, modelling the exchange of a ten into tten ones. Use the phrase 'take and make' for exchange.	$\begin{array}{r} 45 \\ -29 \\ \hline 16 \end{array}$ Children may draw base ten or PV counters and cross off.	$\begin{aligned} & 836-254=582 \\ & 80 \cdot 130 \quad 6 \\ & -800 \quad 50 \quad 4 \\ & \hline 200 \quad 50 \\ & \hline 500802 \\ & \hline \end{aligned}$ Begin by partitioning into pv columns Then move to formal method.

Objective \& Strategy	Concrete	Pictorial	Abstract
Subtracting tens and ones Year 4 subtract with up to 4 digits. Introduce decimal subtraction through context of money	234-179 Model process of exchange using Numicon, base ten and then move to PV counters.	Children to draw pv counters and show their exchange-see Y3	Use the phrase 'take and make' for exchange
Year 5-Subtract with at least 4 digits, including money and measures. Subtract with decimal values, including mixtures of integers and decimals and aligning the decimal point.	As Year 4	Children to draw pv counters and show their exchange-see Y3	${ }^{2} 8^{\prime \prime} x^{10}{ }^{\circ} 8^{\prime} 6$ $-\quad 2128$ 28,928 Use zeros for placeholders. $\begin{array}{r} { }^{10} x^{\prime} 6^{\prime} 9 \cdot 0 \\ -\quad 372 \cdot 5 \\ \hline 6796 \cdot 5 \end{array}$
Year 6-Subtract with increasingly large and more complex numbers and decimal values.			$\begin{array}{r} { }^{\circ 140} 8 \not 0,699 \\ -89,949 \\ \hline 60,750 \\ \hline-\times 1815 \cdot 3 / 4199 \mathrm{~kg} \\ -\quad 36 \cdot 080 \mathrm{~kg} \\ \hline 69 \cdot 339 \mathrm{~kg} \end{array}$

 Strategy	Concrete	Pictorial
Double numbers to 10	Use practical activities using manipultives including cubes and Numicon to demonstrate doubling $+$ = 0 $+$ \square = \square double 4 is 8 00 $+$ = $4 \times 2=8$	Draw pictures and bar models to show how to double numbers
Counting in groups of 2	Count in $2 s$ using real life objects and contexts.	Children make representations to show counting in multiples of 2. Count in multiples of a number aloud. : Show jumps of 2 on a number line
Counting in groups of 10	Use real life objects and contexts to count in groups of 10	Use and draw representations for counting in multiples of 10 . Count in multiples of 10 aloud Show jumps of 10 on a number line
Counting in groups of 5	Use real life objects and contexts to count in groups of 5	Use and draw representations for counting in multiples of 5. Count in 5 s aloud.

 Strategy	Concrete	Pictorial
Understand and use arrays	Use objects laid out in arrays to find the answers to 2 lots of 5, 3 lots of 2 etc.	Make and draw representations of arrays to show understanding
Equal/non equal groups	Use real life objects and contexts to examine equal and non-equal groups. There are 3 equal groups. There are 5 in each group.	Children make/match representations of real life problems to show equal groups and find the total. There are 4 equal groups. There are 2 in each group. There are 8 altogether.

Objective \& Strategy	Concrete	Pictorial	Abstract
Double a 2-digit number	Model doubling using dienes and PV	Draw pictures and representations to show how to double numbers	Partition a number and then double each part before recombining it back togett
Understand equal and non-equal groups	These are non- equal groups There are 5 equal groups. Each group has 3 cakes.	Make representations and drawings of equal groups I have 4 groups of 3 .	

Objective \& Strategy	Concrete	Pictorial	Abstract
Multiplication is commutative	Create arrays using counters and cubes and Numicon.		$\begin{aligned} & 12=3 \times 4 \\ & 12=4 \times 3 \end{aligned}$ Use an array to write multiplication sentences and reinforce repeated addition. $\begin{aligned} & 5+5+5=15 \\ & 3+3+3+3+3=15 \\ & 5 \times 3=15 \\ & 3 \times 5=15 \end{aligned}$
	\cos		
	9010 R 0 0 10 10 10		
	$\begin{aligned} & 000000 \\ & 000000 \end{aligned}$		
	Pupils should understand that an array can represent different equations and that, as multiplication is commutative, the order of the multiplication does not affect the answer.		

 Strategy	Concrete	Pictorial	Abstract	
Understand the 3 times table	Count in three using objects and representa tions of multiples of 3 . (3) (3) (3) (3)		There are 12 wheels. $\begin{aligned} & 4 \times 3=12 \\ & 3 \times 4=12 \end{aligned}$	
Understand the 6 times table	We can double our 3 times table to find our 6 times table.		$\begin{aligned} & 12 \times 3=36 \\ & 6 \times 6=36 \end{aligned}$	
Understand the 9 times table	Count in nines using objects and representations of multiples of 9 . Make links 9 being three groups of three.		There are 36 apples. $\begin{aligned} & 4 \times 9=36 \\ & 9 \times 4=36 \end{aligned}$	

Divisibility rules in 'families' - 2, 4 and 8

2 A number is divisible by 2 if the ones digit is even.
4 If halving a number gives an even value, then the number is divisible by 4. and
For numbers with more than two digits: if the final two digits are divisible by 4 then the number is divisible by 4 .
8 If halving a number twice gives an even value, the number is divisible by 8 .

Objective \& Strategy	Concrete	Pictorial	Abstract	
Multiplying 2-digit by 1 digit using partitioning (distributive law)	Show the links with arrays to illustrate the PV partitioning 4 rows of 10 4 rows of 3 Move onto base ten to move towards a more compact method. 4 rows of 13 Move on to place value counters to show how we are finding groups of a number. We are multiplying by 4 so we need 4 rows	Children can represent their work with place value counters in a way that they understand. They can draw the counters using colours to show different amounts or just use the circles in the different columns to show their thinking as shown below.	$\begin{array}{r} 4 \times 10=40 \\ 4 \times 3=12 \\ 40+12=52 \end{array}$	
2 digit $\times 1$ digit using PV counters (no regrouping)	Chn can see array in the ones and the tens. There is a visual link to repeated addition.	Children practice, drawing their representations. 23×3		

Objective \& Strategy	Concrete	Pictorial	Abstract
Understanding the commutative law.	"Three groups of five is equal to five groups of three."		$\begin{aligned} & 3 \times 5=15 \\ & 5 \times 3=15 \\ & 5 \times 3=3 \times 5=15 \\ & 15 \div 3=5 \\ & 15 \div 5=3 \end{aligned}$
Understanding the distributive law			$\begin{aligned} & 4 \times 5=3 \times 5+5=20 \\ & \\ & 4 \times 5=5 \times 5-5=20 \end{aligned}$

Objective \& Strategy	Concrete	Pictorial	Abstract
Multiply 3 digit numbers by 1 digit. (no exchange)	Use place value counters to show how we are finding groups of a number. We are multiplying by 3 so we need 3 rows$123 \times 3=369$hundreds tens ones (0) (11)(1) (1)(1)(1) (0) (10) (10) (1)(1)(1) (1) (10) (10) (1)(1) (1) 300 +60 +1 Add up each column, starting with the ones.	Children can represent their work with place value counters by drawing place value counters or Dienes.	231 3×1 ones is three ones $\times 693$ 3×3 tens is nine tens 3×2 hundreds is six hundreds
Multiply 3 digit numbers by 1 digit. (with exchange)	224×3 Regroup ten ones to make a new ten. $\begin{array}{r} 600+70 \\ \\ \\ \\ \\ +672 \end{array}$	261×2 $\begin{array}{rl} 500 & 20 \\ & +522 \end{array}$	4 times 1 ones is 4 ones

Objective \& Strategy	Concrete	Pictorial	Abstract
Multiply decimals up to2 decimal places by a single digit			$\begin{array}{r} 2.38 \\ \times \quad 3 \\ \hline 714 \\ 12 \end{array}$ First we lay out the calculation Next, we write the decimal point in the answer (product). Finally, we carry out the multiplication. 3×8 hundredths is 24 hundredths 3×3 tenths is 9 tenths, add 2 tenths we carried is 11 tenths 3×3 ones is 6 ones, add 1 one we carried is 7 ones
Multiply up to 4 digit numbers by 2 digits.			

Objective \&
Strategy
Find half of numbers
to 20.

 Strategy	Concrete	Pictorial	Abstract
Division as sharing (partitive)	There are 20 conkers shared equally between 5 children.	Children use pictures or shapes to share quantities. They may use bar modelling to show and support understanding. Number lines are used to show skip counting (counting forwards) and repeated subtraction (counting backwards).	$20 \div 5=4$
Division as grouping (quotitive)	Use cubes, counters or real objects or to aid understanding. There are 15 biscuits, there are 5 in each bag. How many bags?		15 divided into groups of 5 is 3 $15 \div 5=3$

Strategy

Understanding the
Inverse

Divisibility rules in 'families' - 3, 6 and 9

3 For a number to be divisible by 3 , the sum of the digits of the number must be divisible by 3 .
$6 \quad$ For a number to be divisible by 6, the number must be divisible by both 2 and 3 .
$9 \quad$ For a number to be divisible by 9 , the sum of the digits of the number must be divisible by 9 .

Divisibility rules in 'families' - 5 and 10
5 A number is divisible by 5 if the ones digit is 5 or 0.
10 A number is divisible by 10 if the ones digit is 0 .

.

Divisibility rules in numerical order	
$\mathbf{2}$	A number is divisible by 2 if the ones digit is even.
$\mathbf{3}$	For a number to be divisible by 3, the sum of the digits of the number must be divisible by 3.
$\mathbf{4}$	If halving a number gives an even value, then the number is divisible by 4. and For numbers with more than two digits: if the final two digits are divisible by 4 then the number is divisible by 4.
$\mathbf{5}$	A number is divisible by 5 if the ones digit is 5 or 0.
$\mathbf{6}$	For a number to be divisible by 6, the number must be divisible by both 2 and 3.
$\mathbf{8}$	If halving a number twice gives an even value, the number is divisible by 8.
$\mathbf{9}$	For a number to be divisible by 9, the sum of the digits of the number must be divisible by 9.
$\mathbf{1 0}$	A number is divisible by 10 if the ones digit is 0.

Opeme	${ }^{\text {concese }}$	pitaotal	abtrad
			$\left(\begin{array}{c}10 \\ 6.3 \div 9=0.7 \\ 63 \div 9=7\end{array}\right)$
memen			$0 \cdot 4 \quad 1$ $6 \lcm{2 \cdot 2} 4$

Division of 2 digits by 2 digits

Using $x \& \div$ by 10,100 etc and relating this to a short division method.

$$
\begin{array}{r}
0 \quad 2 \\
3 0 \longdiv { 6 \quad { } ^ { 6 } 0 }
\end{array}
$$

Long Division $\mathbf{- 2}$ digits divided by 2 digits							
H	T	0		H		0	30 goes into 85 twice,
			30 does not go into 8 . So, combine the 8		2		
$3 0 \longdiv { 8 }$	5		tens with the 5 ones.	$3 0 \longdiv { 8 }$			
				6	0		
H	T			H	T	0	
	2		Subtract the 60 from the 85 and this leaves			$r 25$	85 divided by 30 is 2 with a remainder of
$3 0 \longdiv { 8 }$			25.	$3 0 \longdiv { 8 }$			25
6				6	0		
2	5			2	5		

Long Division—procedural summary (remainder in any of the digits)

1. Divide.	2. Multiply \& subtract.	3. Drop down the next digit.
$\begin{gathered} { }^{n t o} \\ 2 \longdiv { 1 } \\ 2 \longdiv { 2 7 8 } \end{gathered}$ Two goes into 2 one time, or 2 hundreds $\div 2=1$ hundred.	$\begin{gathered} \quad h+0 \\ 1 \\ 2 \longdiv { 2 7 8 } \\ \frac{-2}{0} \end{gathered}$ Multiply $1 \times 2=2$, write that 2 under the two, and subtract to find the remainder of zero.	$\begin{gathered} h+0 \\ 18 \\ 2 \longdiv { 2 7 8 } \\ -\frac{2}{0} \frac{1}{7} \end{gathered}$ Next, drop down the 7 of the tens next to the zero.
Divide.	Multiply \& subtract.	Drop down the next digit.
$\begin{gathered} \begin{array}{c} h+0 \\ 13 \\ 2 \longdiv { 2 7 8 } \\ -2 \\ \hline 07 \end{array} \end{gathered}$ Divide 2 into 7. Place 3 into the quotient.	$\begin{gathered} h+0 \\ 13 \\ 2 \longdiv { 2 7 8 } \\ \frac{-2}{07} \\ -\quad 6 \\ \hline 1 \end{gathered}$ Multiply $3 \times 2=6$, write that 6 under the 7 , and subtract to find the remainder of 1 ten.	$\begin{gathered} h+0 \\ 13 \\ 2 \longdiv { 2 7 8 } \\ -\frac{2}{07} \\ -\quad 6 \\ \hline 18 \end{gathered}$ Next, drop down the 8 of the ones next to the 1 leftover ten.
1. Divide.	2. Multiply \& subtract.	3. Drop down the next digit.
$\begin{gathered} h+0 \\ 139 \\ 2 \longdiv { 2 7 8 } \\ -\frac{2}{07} \\ -\quad 6 \\ \hline 18 \end{gathered}$ Divide 2 into 18. Place 9 into the quotient.	$\begin{gathered} h t 0 \\ 139 \\ 2 \longdiv { 2 7 8 } \\ \frac{-2}{07} \\ -6 \\ \hline \begin{array}{r} 18 \\ -18 \end{array} \end{gathered}$ Multiply $9 \times 2=18$, write that 18 under the 18 , and subtract to find the remainder of zero.	$\begin{gathered} h t o \\ 139 \\ 2 \longdiv { 2 7 8 } \\ \frac{-2}{07} \\ -\quad 6 \\ \hline 18 \\ \frac{-18}{0} \end{gathered}$ There are no more digits to drop down. The quotient is 139 .

Divide 2 into 18. Place 9 into the quotient.

Multiply $9 \times 2=18$, write that 18 remainder of zero

