SACRED HEART CATHOLIC PRIMARY

 SCHOOL \& NURSERY
Sacred Heart Catholic Primary School and Nursery

Maths Progression Map

		Nursery	Reception	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
	Number bonds		Bonds to 5 Number bonds 10 (tens frame) Number bonds to 10 (part-part whole model)	represent and use number bonds and related subtraction facts within 20	recall and use addition and subtraction facts to 20 fluently, and derive and use related facts up to 100				
Addifion and Subtraction	Mental Calculations	Subitising 1-3	Find one more and one less Combine two groups to find the whole Adding by counting on Subtract by counting back	add and subtract one-digit and twodigit numbers to 20 , including zero read, write and interpret mathematical statements involving addition (+), subtraction (-) and equals (=) signs (appears also in Written Methods)	add and subtract numbers using concrete objects, pictorial representations, and mentally, including: * a two-digit number and ones * a two-digit number and tens * two two-digit numbers * adding three one-digit numbers show that addition of two numbers can be done in any order (commutative) and subtraction of one number from another cannot	add and subtract numbers mentally, including: * a three-digit number and ones * a three-digit number and tens * a three-digit number and hundreds	Add and subtract numbers (up to 4 digit numbers)	add and subtract numbers mentally with increasingly large numbers	perform mental calculations, including with mixed operations and large numbers use their knowledge of the order of operations to carry out calculations involving the four operations
	Written methods			read, write and interpret mathematical statements involving addition (+), subtraction (-) and equals (=) signs (appears also in Mental Calculation)	Add and subtract numbers with up to two digits using a range of models and images including: bar model, number line and place value equipment	add and subtract numbers with up to three digits, using formal written methods of columnar addition and subtraction	add and subtract numbers with up to 4 digits using the formal written methods of columnar addition and subtraction where appropriate	add and subtract whole numbers with more than 4 digits, including using formal written methods (columnar addition and subtraction)	Use column method to add and subtract with exchanges in any column.

	Inverse operations, estimating and checking answers			Find a missing number when given a completed calculation	recognise and use the inverse relationship between addition and subtraction and use this to check calculations and solve missing number problems.	estimate the answer to a calculation and use inverse operations to check answers	estimate and use inverse operations to check answers to a calculation	use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy	use estimation to check answers to calculations and determine, in the context of a problem, levels of accuracy.
	Problem Solving	Sorting into groups	Sorting into groups	solve one-step problems that involve addition and subtraction, using concrete objects and pictorial representations, and missing number problems such as $7=\square-9$	solve problems with addition and subtraction: * using concrete objects and pictorial representations, including those involving numbers, quantities and measures * applying their increasing knowledge of mental and written methods solve simple problems in a practical context involving addition and subtraction of money of the same unit, including giving change	solve problems, including missing number problems, using number facts, place value, and more complex addition and subtraction	solve addition and subtraction two-step problems in contexts, deciding which operations and methods to use and why	solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why	solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why Solve problems involving addition, subtraction, multiplication and division

								remainders appropriately for the context	the context divide numbers up to 4 digits by a twodigit whole number using the formal written method of long division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context use written division methods in cases where the answer has up to two decimal places
	Properties of numbers: multiples, factors, primes, square and cube numbers						recognise and use factor pairs and commutativity in mental calculations	identify multiples and factors, including finding all factor pairs of a number, and common factors of two numbers. know and use the vocabulary of prime numbers, prime factors and composite (nonprime) numbers establish whether a number up to 100 is prime and recall prime numbers up to 19 recognise and use square numbers and cube numbers, and the notation for squared (${ }^{2}$) and cubed (${ }^{3}$)	identify common factors, common multiples and prime numbers use common factors to simplify fractions; use common multiples to express fractions in the same denomination calculate, estimate and compare volume of cubes and cuboids using standard units, including centimeter cubed (cm^{3}) and cubic meters $\left(m^{3}\right)$, and extending to other units such as mm^{3} and km^{3}

	Equivalence				write simple fractions e.g. $1 / 2$ of 6 $=3$ and recognise the equivalence of $2 / 4$ and $1 / 2$.	recognise and show, using diagrams, equivalent fractions with small denominators	recognise and show, using diagrams, families of common equivalent fractions recognise and write decimal equivalents of any number of tenths or hundredths recognise and write decimal equivalents to ${ }^{1} / 4^{\prime}$; $1 / 2^{\prime}{ }^{3} / 4$	identify, name and write equivalent fractions of a given fraction, represented visually, including tenths and hundredths read and write decimal numbers as fractions (e.g. $0.71={ }^{71} / 100$) recognise and use thousandths and relate them to tenths, hundredths and decimal equivalents recognise the per cent symbol (\%) and understand that per cent relates to "number of parts per hundred", and write percentages as a fraction with denominator 100 as a decimal fraction	use common factors to simplify fractions; use common multiples to express fractions in the same denomination associate a fraction with division and calculate decimal fraction equivalents (e.g. 0.375) for a simple fraction (e.g. ${ }^{3} / 8$) recall and use equivalences between simple fractions, decimals and percentages, including in different contexts.
	Addition and subtraction of decimals					add and subbract fractions with the same denominator within one whole (e.g. $5 / 7+1 / 7=6 / 7$)	add and subtract fractions with the same denominator	add and subtract fractions with the same denominator and multiples of the same number recognise mixed numbers and improper fractions and convert from one form to the other and write mathematical statements > 1 as a mixed number (e.g. ${ }^{2} / 5+{ }_{5} / 5=6 / 5=$ $1^{1} /{ }_{5}$)	$\begin{aligned} & \text { add and subtract } \\ & \text { fractions with } \\ & \text { different } \\ & \text { denominators and } \\ & \text { mixed numbers, } \\ & \text { using the } \\ & \text { concept of } \\ & \text { equivalent } \\ & \text { fractions } \end{aligned}$

		Nursery	Reception	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
$\begin{aligned} & \text { t } \\ & \mathbf{0} \\ & \frac{1}{0} \\ & \mathbf{0} \\ & 2 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	Comparing and estimating	Taller and shorter Width and thickness Compare weight and mass	Height Length Mass Time sequencing Capacity	compare, describe and solve practical problems for: * lengths and heights [e.g. long/short, longer/shorter, tall/short, double/half] mass/weight [e.g. heavy/light, heavier than, lighter than] * capacity and volume [e.g. full/empty, more than, less than, half, half full, quarter] * time [e.g. quicker, slower, earlier, later] sequence events in chronological order using language [e.g. before and after, next, first, today, yesterday, tomorrow, morning, afternoon and evening]	compare, describe and solve practical problems for: * lengths and heights [e.g. long/short, longer/shorter, tall/short, double/half] mass/weight [e.g. heavy/light, heavier than, lighter than] capacity and volume [e.g. full/empty, more than, less than, half, half full, quarter] * time [e.g. quicker, slower, earlier, later] sequence events in chronological order using language [e.g. before and after, next, first, today, yesterday, tomorrow, morning, afternoon and evening]	compare durations of events, for example to calculate the time taken by particular events or tasks estimate and read time with increasing accuracy to the nearest minute; record and compare time in terms of seconds, minutes, hours and o'clock; use vocabulary such as a.m./p.m., morning, afternoon, noon and midnight (appears also in Telling the Time)	estimate, compare and calculate different measures, including money in pounds and pence (also included in Measuring)	calculate and compare the area of squares and rectangles including using standard units, square centimetres $\left(\mathrm{cm}^{2}\right)$ and square metres (m^{2}) and estimate the area of irregular shapes (also included in measuring) estimate volume (e.g. using $1 \mathrm{~cm}^{3}$ blocks to build cubes and cuboids) and capacity (e.g. using water)	calculate. estimate and compare volume of cubes and cuboids using standard units, including centimetre cubed $\left(\mathrm{cm}^{3}\right)$ and cubic metres $\left(\mathrm{m}^{3}\right)$, and extending to other units such as mm^{3} and km^{3}.
	Measuring and calculating	Full, empty, part full	Daily routine Recognise length, height and distance Understand the difference between weight and capacity	measure and begin to record the following: * lengths and heights * mass/weight * capacity and volume * time (hours, minutes, seconds) recognise and know the value of different denominations of coins and notes	choose and use appropriate standard units to estimate and measure length/height in any direction (m / cm); mass (kg/g); temperature $\left({ }^{\circ} \mathrm{C}\right)$; capacity (liters/ml) to the nearest appropriate unit, using rulers, scales, thermometers and measuring vessels recognise and use symbols for pounds (£) and pence (p); combine amounts	measure, compare, add and subtract: lengths (m/cm/mm); mass (kg/g); volume/capacity ($1 / \mathrm{ml}$) measure the perimeter of simple 2-D shapes add and subtract amounts of money to give change, using both $£$ and p in practical contexts	estimate, compare and calculate different measures, including money in pounds and pence measure and calculate the perimeter of a rectilinear figure find the area of rectilinear shapes by counting squares	measure, compare, add and subtract: lengths ($\mathrm{m} / \mathrm{cm} / \mathrm{mm}$); mass (kg/g); volume/capacity (1/ml) measure the perimeter of simple 2-D shapes calculate and compare the area of squares and rectangles including using standard units, square centimeters $\left(\mathrm{cm}^{2}\right)$ and square	estimate, compare and calculate different measures, including money in pounds and pence measure and calculate the perimeter of a rectilinear figure calculate the area of parallelograms and triangles calculate, estimate and compare volume of cubes and

	Nursery	Reception	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Identifying shapes and their properties	talk about the shapes of everyday objects recognise properties of 2D shapes	recognise 2-D and 3-D shapes; using mathematical terms selects a particular named shape	recognise and name common 2-D and 3-D shapes, including: * 2-D shapes [e.g. rectangles (including squares), circles and triangles] * 3-D shapes [e.g. cuboids (including cubes), pyramids and spheres].	identify and describe the properties of 2-D shapes, including the number of sides and line symmetry in a vertical line identify and describe the properties of 3-D shapes, including the number of edges, vertices and faces identify 2-D shapes on the surface of 3 D shapes, [for example, a circle on a cylinder and a triangle on a pyramid]	identify and describe the properties of 2-D shapes, including the number of sides and	identify lines of symmetry in 2-D shapes presented in different orientations	identify 3-D shapes, including cubes and other cuboids, from 2-D representations	recognise, describe and build simple 3-D shapes, including making nets illustrate and name parts of circles, including radius, diameter and circumference and know that the diameter is twice the radius
Drawing and constructing	Constructing with 3D shapes Pattern and picture making with 2D objects	Make simple patterns Explore more complex patterns	Arrange a 2D shape to match a compound shape Arrange 3D shapes to match a compound shape	Consolidation of work in Year 1	draw 2-D shapes and make 3-D shapes using modelling materials; recognise 3-D shapes in different orientations and describe them	complete a simple symmetric figure with respect to a specific line of symmetry	draw given angles, and measure them in degrees (${ }^{\circ}$)	draw 2-D shapes using given dimensions and angles recognise, describe and build simple 3-D shapes, including making nets

	Comparing and classifying	identify similarities of shapes in the environment	order two or three items by length and height order two items by weigh or capacity	Use correct mathematical vocabulary to describe the properties of shape and distinguish between them	compare and sort common 2-D and 3-D shapes and everyday objects	Compare shapes by the following properties: regular and irregular shapes, symmetry, quadrilaterals	compare and classify geometric shapes, including quadrilaterals and triangles, based on their properties and sizes	use the properties of rectangles to deduce related facts and find missing lengths and angles distinguish between regular and irregular polygons based on reasoning about equal sides and angles	compare and classify geometric shapes based on their properties and sizes and find unknown angles in any triangles, quadrilaterals, and regular polygons
	Angles					recognise angles as a property of shape or a description of a turn identify right angles, recognise that two right angles make a half-turn, three make three quarters of a turn and four a complete turn; identify whether angles are greater than or less than a right angle identify horizontal and vertical lines and pairs of perpendicular and parallel lines	identify acute and obtuse angles and compare and order angles up to two right angles by size	know angles are measured in degrees: estimate and compare acute, obtuse and reflex angles identify: * angles at a point and one whole turn (total 360°) * angles at a point on a straight line and $1 / 2$ a turn (total 180°) * other multiples of 90°	recognise angles where they meet at a point, are on a straight line, or are vertically opposite, and find missing angles

		Nursery	Reception	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
	Position, direction and movement	use positional language	describe the position of an object	describe position direction and movement, including half, quarter and threequarter turns.	use mathematical vocabulary to describe position, direction and movement including movement in a straight line and distinguishing between rotation as a turn and in terms of right angles for quarter, half and three-quarter turns (clockwise and anti-clockwise)	Consolidation of work in Year 2	describe positions on a 2-D grid as coordinates in the first quadrant describe movements between positions as translations of a given unit to the left/right and up/down plot specified points and draw sides to complete a given polygon	identify, describe and represent the position of a shape following a reflection or translation, using the appropriate language, and know that the shape has not changed	describe positions on the full coordinate grid (all four quadrants) draw and translate simple shapes on the coordinate plane, and reflect them in the axes.
	Pattern		Use common shapes to create patterns and build models	create sequences of shapes	order and arrange combinations of mathematical objects in patterns and sequences				

		Nursery	Reception	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
	Interpreting, constructing and presenting data				interpret and construct simple pictograms, tally charts, block diagrams and simple tables ask and answer simple questions by counting the number of objects in each category and sorting the categories by quantity ask and answer questions about totalling and comparing categorical data	interpret and present data using bar charts, pictograms and tables	interpret and present discrete and continuous data using appropriate graphical methods, including bar charts and time graphs	complete, read and interpret information in tables, including timetables	interpret and construct pie charts and line graphs and use these to solve problems
	Solving problems					solve one-step and two-step questions [e.g. 'How many more?' and 'How many fewer?'] using information presented in scaled bar charts and pictograms and tables.	solve comparison, sum and difference problems using information presented in bar charts, pictograms, tables and other graphs.	solve comparison, sum and difference problems using information presented in a line graph	calculate and interpret the mean as an average

		Nursery	Reception	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
$\frac{0}{6}$	Equations			solve one-step problems that involve addition and subtraction, using concrete objects and pictorial representations, and missing number problems such as $7=\square-9$ represent and use number bonds and related subtraction facts within 20	recognise and use the inverse relationship between addition and subtraction and use this to check calculations and missing number problems. recall and use addition and subtraction facts to 20 fluently, and derive and use related facts up to 100	solve problems, including missing number problems, using number facts, place value, and more complex addition and subtraction. solve problems, including missing number problems, involving multiplication and division, including integer scaling	solve problems, including missing number problems, using number facts, place value, and more complex addition and subtraction. solve problems, including missing number problems, involving multiplication and division, including integer scaling	use the properties of rectangles to deduce related facts and find missing lengths and angles	express missing number problems algebraically find pairs of numbers that satisfy number sentences involving two unknowns enumerate all possibilities of combinations of two variables
$\frac{0}{4}$	Formulae						Perimeter can be expressed algebraically as 2(a $+b)$ where a and b are the dimensions in the same unit.	Perimeter can be expressed algebraically as 2($a+b)$ where a and b are the dimensions in the same unit.	use simple formulae recognise when it is possible to use formulae for area and volume of shapes
	Sequences	$A B$ sequences	$A B$ sequences $A B C$ sequences $A B B$ sequences $A B B C$ sequences	sequence events in chronological order using language such as: before and after, next, first, today, yesterday, tomorrow, morning, afternoon and evening	compare and sequence intervals of time order and arrange combinations of mathematical objects in patterns		Perimeter can be expressed algebraically as 2(a $+b)$ where a and b are the dimensions in the same unit.	Perimeter can be expressed algebraically as $2(a+b)$ where a and b are the dimensions in the same unit.	Perimeter can be expressed algebraically as 2($a+b)$ where a and b are the dimensions in the same unit.

